Category Archives: Data Science

Sequence to Sequence Models: Types, Examples

sequence-to-sequence model

Sequence to sequence (Seq2Seq) modeling is a powerful machine learning technique that has revolutionized the way we do natural language processing (NLP). It allows us to process input sequences of varying lengths and produce output sequences of varying lengths, making it particularly useful for tasks such as language translation, speech recognition, and chatbot development.  Sequence to sequence modeling also provides a great foundation for creating text summarizers, question answering systems, sentiment analysis systems, and more. With its wide range of applications, learning about sequence to sequence modeling concepts is essential for anyone who wants to work in the field of natural language processing. This blog post will discuss types of …

Continue reading

Posted in Data Science, Machine Learning, NLP. Tagged with , , , .

Natural Language Processing (NLP) Task Examples

natural language processing tasks examples

Have you ever wondered how your phone’s voice assistant understands your commands and responds appropriately? Or how search engines are able to provide relevant results for your queries? The answer lies in Natural Language Processing (NLP), a subfield of artificial intelligence (AI) that focuses on enabling machines to understand and process human language.  NLP is becoming increasingly important in today’s world as more and more businesses are adopting AI-powered solutions to improve customer experiences, automate manual tasks, and gain insights from large volumes of textual data. With recent advancements in AI technology, it is now possible to use pre-trained language models such as ChatGPT to perform various NLP tasks with …

Continue reading

Posted in Data Science, NLP. Tagged with , .

Statistics Terminologies Cheat Sheet & Examples

probability distribution histogram

Have you ever felt overwhelmed by all the statistics terminology out there? From sampling distribution to central limit theorem to null hypothesis to p-values to standard deviation, it can be hard to keep up with all the statistical concepts and how they fit into your research. That’s why we created a Statistics Terminologies Cheat Sheet & Examples – a comprehensive guide to help you better understand the essential terms and their use in data analysis. Our cheat sheet covers topics like descriptive statistics, probability, hypothesis testing, and more. And each definition is accompanied by an example to help illuminate the concept even further. Understanding statistics terminology is critical for data …

Continue reading

Posted in Data Science, statistics. Tagged with , .

Machine Learning Bias Explained with Examples

machine learning models bias variance vs complexity

In the artificial intelligence (AI) / machine learning (ML) powered world where predictive models have started getting used more often in decision-making areas, the primary concerns of policy makers, auditors and end users have been to make sure that these systems using the models are not making biased/unfair decisions based on model predictions (intentional or unintentional discrimination). Imagine industries such as banking, insurance, and employment where models are used as solutions to decision-making problems such as shortlisting candidates for interviews, approving loans/credits, deciding insurance premiums etc. How harmful it could be to the end users as these decisions may impact their livelihood based on biased predictions made by the model, thereby, …

Continue reading

Posted in AI, Data Science, Machine Learning. Tagged with , , .

Machine Learning Concepts & Examples

Machine Learning Modeling Workflow

Machine learning is a machine’s ability to learn from data. It has been around for decades, but machine learning is now being applied in nearly every industry and job function. In this blog post, we’ll cover a detailed introduction to what is machine learning (ML) including different definitions. We will also learn about different types of machine learning tasks, algorithms, etc along with real-world examples. What is machine learning & how does it work? Simply speaking, machine learning can be used to model our beliefs about real-world events. For example, let’s say a person came to a doctor with a certain blood report. A doctor based on his belief system …

Continue reading

Posted in Data Science, Deep Learning, Machine Learning. Tagged with , , .

Geometric Distribution Concepts, Formula, Examples

Geometric Distribution Example

Geometric Distribution, a widely used concept in probability theory, is used to represent the probability of achieving success or failure in a series of independent trials, where the probability of success remains constant. It is one of the essential tools used in a wide range of fields, including economics, engineering, physics, and statistics. As data scientists / statisticians, it is of utmost important to understand its concepts and applications in a clear manner. In this blog, we will introduce you to the basics of Geometric distribution, starting with its definition and properties. We will also explore the geometric distribution formula and how it is used to calculate the probability of …

Continue reading

Posted in Data Science, statistics. Tagged with , .

Data value chain: Framework, Concepts

data value chain framework

As organizations become increasingly data-driven, understanding the value of data is critical for success. The data value chain framework helps to identify and maximize the value of data by breaking it down into its components. In this post, we will explain what a data value chain is, why it’s important, and how to implement it. Data Value Chain Framework: Key Stages The data value chain (DVC) is a business model that helps organizations understand how to create, manage and utilize their data assets in order to realize maximum business value based on using them. It breaks down the various stages of an organization’s entire journey with its data into distinct …

Continue reading

Posted in Data, Data analytics, Data lake, Data Science, Data Warehouse. Tagged with , .

Ensemble Methods in Machine Learning: Examples

voting ensemble method

Machine learning models are often trained with a variety of different methods in order to create a more accurate prediction. Ensemble methods are one way to do this, and involve combining the predictions of several different models in order to get a more accurate result. When different models make predictions together, it can help create a more accurate result. Data scientists should care about this because it can help them create models that are more accurate. In this article, we will look at some of the common ensemble methods used in machine learning. Data scientists should care about this because it can help them create models that are more accurate. …

Continue reading

Posted in Data analytics, Data Science, Machine Learning. Tagged with , .

Random Forest Classifier Python Example

random forest classifier machine learning

Random forest classifiers are popular machine learning algorithms that are used for classification. In this post, you will learn about the concepts of random forest classifiers and how to train a Random Forest Classifier using the Python Sklearn library. This code will be helpful if you are a beginner data scientist or just want to quickly get a code sample to get started with training a machine learning model using the Random Forest algorithm. The following topics will be covered: What is a Random Forest Classifier & How do they Work? Random forests are a type of machine learning algorithm that is used for classification and regression tasks. A classifier …

Continue reading

Posted in AI, Data Science, Machine Learning, Python. Tagged with , , .

CART Decision Tree Python Example

CART Decision Tree CLassifier

The Classification and Regression Tree (CART) is a supervised machine learning algorithm used for classification, regression. In this blog, we will discuss what CART decision tree is, how it works, and provide a detailed example of its implementation using Python. What is CART & How does it work? CART stands for Classification And Regression Tree. It is a type of decision tree which can be used for both classification and regression tasks based on non-parametric supervised learning method. The following represents the algorithm steps. First and foremost, the data is split into training and test set.  Take a feature K and split the training data set into two subsets based on …

Continue reading

Posted in Data Science, Machine Learning. Tagged with , .

Decision Tree Concepts, Examples, Interview Questions

Decision tree is one of the most commonly used machine learning algorithms which can be used for solving both classification and regression problems. It is very simple to understand and use. Here is a lighter one representing how decision trees and related algorithms (random forest etc) are agile enough for usage.   In this post, you will learn about some of the following in relation to machine learning algorithm – decision trees vis-a-vis one of the popular C5.0 algorithm used to build a decision tree for classification. In another post, we shall also be looking at CART methodology for building a decision tree model for classification. The post also presents a …

Continue reading

Posted in Career Planning, Data Science, Interview questions, Machine Learning. Tagged with , , .

Two-way ANOVA Test: Concepts, Formula & Examples

two-way ANOVA test formula

The two-way analysis of variance (ANOVA) test is a powerful tool for analyzing data and uncovering relationships between a dependent variable and two different independent variables. It’s used in fields like psychology, medicine, engineering, business, and other areas that require a deep understanding of how two separate variables interact and impact dependent variable. With the right knowledge, you can use this test to gain valuable insights into your data. Through a two-way ANOVA, data scientists are able to assess complex relationships between multiple variables and draw meaningful conclusions from the data. This helps them make informed decisions and identify patterns in the data that may have gone unnoticed otherwise. Let’s …

Continue reading

Posted in Data Science, statistics. Tagged with , .

Population & Samples in Statistics: Examples

characteristics of a sample

In statistics, population and sample are two fundamental concepts that help us to better understand data. A population is a complete set of objects from which we can obtain data. A population can include all people, animals, plants, or things in a given area. On the other hand, a sample is a subset of the population that is used for observation and analysis. In this blog, we will further explore the concepts of population and samples and provide examples to illustrate the differences between them in statistics. What is a population in statistics? In statistics, population refers to the entire set of objects or individuals about which we want to …

Continue reading

Posted in Data Science, statistics. Tagged with , .

Bayesian thinking & Real-life Examples

Bayesian thinking and real-life examples

Bayesian thinking is a powerful way of looking at the world, and it can be useful in many real-life situations. Bayesian thinking involves using prior knowledge to make more accurate predictions about future events or outcomes. It is based on the Bayes theorem, which states that the probability of an event occurring is determined by its prior probability combined with new information as it becomes available. It is important for data scientists to learn about Bayesian thinking because it can help them make accurate predictions and draw more meaningful insights from data. In this blog post, we will discuss Bayesian thinking and provide some examples from everyday life to illustrate …

Continue reading

Posted in Data Science, statistics. Tagged with , , .

True Error vs Sample Error: Difference

Understanding the differences between true error and sample error is an important aspect of data science. In this blog post, we will be exploring the difference between these two common features of statistical inference. We’ll discuss what they are and how they differ from each other, as well as provide some examples of real-world scenarios where an understanding of both is important. By the end, you should have a better grasp of the differences between true error and sample error. In case you are a data scientist, you will want to understand the concept behind the true error and sample error. These concepts are key to understand for evaluating a …

Continue reading

Posted in AI, Data Science, Machine Learning. Tagged with , , .