Author Archives: Ajitesh Kumar
Chi-square test – Types, Concepts, Examples

The Chi-square (χ2) test is a statistical test used to determine whether the distribution of observed data is consistent with the distribution of data expected under a particular hypothesis. The Chi-square test can be used to compare two distributions, or to assess the goodness of fit of a given distribution to observed data. In this blog post, we will discuss the types of Chi-square tests, the concepts behind them, and how to perform them using Python / R. As data scientists, it is important to have a strong understanding of the Chi-square test so that we can use it to make informed decisions about our data. We will also provide …
Hypothesis Testing Steps & Real Life Examples

Hypothesis testing is a technique that helps scientists, researchers, or for that matter, anyone test the validity of their claims or hypotheses about real-world or real-life events. Hypothesis testing techniques are often used in statistics and data science to analyze whether the claims about the occurrence of the events are true, whether the results returned by performance metrics of machine learning models are representative of the models or they happened by chance. This blog post will cover some of the key statistical concepts including steps and examples in relation to what is hypothesis testing, and, how to formulate them. The knowledge of hypothesis formulation and hypothesis testing holds the key …
Insurance Machine Learning Use Cases

As insurance companies face increasing competition and ever-changing customer demands, they are turning to machine learning for help. Machine learning / AI can be used in a variety of ways to improve insurance operations, from developing new products and services to improving customer experience. It would be helpful for product manager and data science architects to get a good understanding around some of the use cases which can be addressed / automated using machine learning / AI based solutions. In this blog post, we will explore some of the most common insurance machine learning / AI use cases. Stay tuned for future posts that will dive into each of these …
Invoice Processing Machine Learning Use Cases

Invoice processing is a critical part of any business. It’s the process of creating, managing, and paying invoices. Without invoice processing, businesses would have a difficult time keeping track of their finances. There are many different invoice processing use cases. For example, businesses can use invoice processing to keep track of customer payments, manage vendor contracts, and streamline their accounting processes. Invoice processing can also be used to detect fraud and prevent errors. Machine learning / AI can be used to improve invoice processing in a number of ways. As a product manager, it will be helpful to understand these use cases and how machine learning can be used to …
Tail Spend Management & Spend Analytics

Do you know where your business is spending its money? And more importantly, do you know where your business SHOULD be spending its money? Many businesses don’t have a good handle on their tail spend – the money that’s spent on things that are not essential to the core operations of the company. Tail spend can be difficult to track and manage, but with the help of spend analytics tools and machine learning, it’s becoming easier than ever before. In this blog post, we’ll discuss what tail spend is, how to track it, and how to use analytics and machine learning to make better decisions about where to allocate your …
Procurement Advanced Analytics Use Cases

The procurement analytics applications are poised to grow exponentially in the next few years. With so much data available and the need for digital transformation across procurement organization, it’s important to know how procurement analytics can help you make better business decisions. This blog will cover procurement analytics and key use cases of advanced analytics that will be useful for business stakeholders such as category managers, sourcing managers, supplier relationship managers, business analysts / product managers, and data scientists implement different use cases using machine learning. Procurement analytics will allow you to use data very effectively in achieving data-driven decision making. One can get started with procurement analytics with focus …
Probability: Basic concepts, formulas, and examples

Probability is a branch of mathematics that deals with the likelihood of an event occurring. It is important to understand probability concepts if you want to get good at data science and machine learning. In this blog post, we will discuss the basic concepts of probability and provide examples to help you understand it better. We will also introduce some common formulas associated with probability. So, let’s get started! What is probability and what are the different types? Probability is a concept in mathematics that measures the likelihood of an event occurring. It is typically expressed as a number between 0 and 1, with 0 indicating that an event is …
Spend Analytics Use Cases: AI & Data Science

In this post, you will learn about the high-level concepts of spend analytics in relation to procurement and how data science / machine learning & AI can be used to extract actionable insights as part of spend analytics. This will be useful for procurement professionals such as category managers, sourcing managers, and procurement analytics stakeholders looking to understand the concepts of spend analytics and how they can drive decisions based on spend analytics. What is Spend Analytics? Simply speaking, spend analytics is about performing systematic computational analysis to extract actionable insights from spend and savings data across different categories of spends in order to achieve desired business outcomes such as cost savings, …
When to Use Z-test vs T-test: Differences, Examples

When it comes to statistical tests, z-test and t-test are two of the most commonly used. But what is the difference between z-test and t-test? And when should you use Z-test vs T-test? In this blog post, we will answer all these questions and more! We will start by explaining the difference between z-test and t-test in terms of their formulas. Then we will go over some examples so that you can see how each test is used in practice. As data scientists, it is important to understand the difference between z-test and t-test so that you can choose the right test for your data. Let’s get started! Difference between …
Two sample Z-test for Proportions: Formula & Examples

In statistics, a two-sample z-test for proportions is a method used to determine whether two samples are drawn from the same population. This test is used when the population proportion is unknown and there is not enough information to use the chi-squared distribution. The test uses the standard normal distribution to calculate the test statistic. As data scientists, it is important to know how to conduct this test in order to determine whether two proportions are equal. In this blog post, we will discuss the formula and examples of the two-proportion Z-test. What is two proportion Z-test? A two-proportion Z-test is a statistical hypothesis test used to determine whether two …
OKRs vs KPIs vs VGIs: Differences and Examples

The difference between OKRs , KPIs and VGIs is not always clear, but the concept is a great way to measure the progress towards achieving your business objectives. As business analysts, product managers, project or team leaders, it is important to understand the concepts of OKRs, VGIs & KPIs, and what’s the difference between OKR, VGIs and KPIs. In this blog post, we will discuss OKR vs VGI vs KPI and how they can be used for setting goals / objectives and measure different aspects of your team’s and organization’s performance in relation to achieving those goals. We’ll also go over real-world examples for OKRs, VGIs and KPIs so you can …
Decision Making Models: Concepts, Examples, Importance

Making decisions is a critical part of business operations. However, making the right decision is not always easy. There are a number of different decision models that organizations can use to make better decisions. In this blog post, we will discuss some of the most popular decision models, what is their importance, and explain how they can be used to create desired business outcomes with the help of examples. In addition, we will also learn how could data and insights be used to drive decisions while implementing different kind of decision models. A decision scientist should be aware of these concepts fairly well. Decision models & different types Decision making …
Difference between Data Science & Decision Science

Data science and decision science are two data-driven fields that have grown in prominence over the past few years. Data scientists use data to come up with conclusions or predictions about things like customer behavior and assess suitability of those conclusions / predictions, while decision scientists combine data with other information sources to make decisions and assess suitability of those decisions. The difference between data science and decision science is important for business owners to understand in clear manner in order to leverage the best of both worlds to achieve desired business outcomes. In this post, you will learn about the concepts of data science & decision science and what’s …
Loan Eligibility Prediction using Machine Learning

It is no secret that the loan industry is a multi-billion dollar industry. Lenders make money by charging interest on loans, and borrowers want to get the best loan terms possible. In order to qualify for a loan, borrowers are typically required to provide information about their income, assets, and credit score. This process can be time consuming and frustrating for both lenders and borrowers. In this blog post, we will discuss how AI / machine learning can be used to predict loan eligibility. As data scientists, it is of great importance to understand some of challenges in relation to loan eligibility and how machine learning models can be built …
What is Data-Driven Decision Making? Why & How?

Data-driven decision-making is a data-driven approach to making decisions to achieve desired outcome. More precisely, data-driven decision making is an insights-driven approach to drive decisions and related actions. The data can come from internal and external data sources. Data-driven decision-makers use data in their decision process to validate existing actions or take new actions (predictive or prescriptive analytics). They make decisions based on the actionable insights generated from the data. The goal is to make informed decisions while ensuring transparency across the stakeholders. In this blog post, we will discuss what data-driven decision-making is, how it differs from other types of decision-making, and why you should consider going for this …
Healthcare & Machine Learning Use Cases / Projects

AI & Machine learning is being used more and more in the healthcare industry. This is because it has the potential to improve patient outcomes, make healthcare more cost-effective, and help with other important tasks. In this blog post, we will discuss some of the healthcare & AI / machine learning use cases that are currently being implemented. We will also talk about the benefits of using machine learning in healthcare settings. Stay tuned for an exciting look at the future of healthcare! What are top healthcare challenges & related AI / machine learning use cases? Before getting into understand how machine learning / AI can be of help in …