Tag Archives: machine learning

Logistic Regression Concepts, Python Example

logistic regression model 3

In this blog post, we will discuss the logistic regression machine learning algorithm with a python example. Logistic regression is a type of regression algorithm that is used to predict the probability of occurrence of an event. It is often used in machine learning applications. In this tutorial, we will use python to implement logistic regression for binary classification problems.  What is Logistic Regression? Logistic regression is a machine learning algorithm used for classification problems. That is, it can be used to predict whether an instance belongs to one class or the other. For example, it could be used to predict whether a person is male or female, based on …

Continue reading

Posted in Data Science, Machine Learning, Python. Tagged with , , .

Machine Learning Concepts & Examples

Machine Learning Modeling Workflow

Machine learning is a machine’s ability to learn from data. It has been around for decades, but machine learning is now being applied in nearly every industry and job function. In this blog post, we’ll cover a detailed introduction to what is machine learning (ML) including different definitions. We will also learn about different types of machine learning tasks, algorithms, etc along with real-world examples. What is machine learning & how does it work? Simply speaking, machine learning can be used to model our beliefs about real-world events. For example, let’s say a person came to a doctor with a certain blood report. A doctor based on his belief system …

Continue reading

Posted in Data Science, Deep Learning, Machine Learning. Tagged with , , .

Linear Regression Explained with Real Life Example

Multiple linear regression example

In this post, the linear regression concept in machine learning is explained with multiple real-life examples. Both types of regression models (simple/univariate and multiple/multivariate linear regression) are taken up for sighting examples. In case you are a machine learning or data science beginner, you may find this post helpful enough. You may also want to check a detailed post on what is machine learning – What is Machine Learning? Concepts & Examples. What is Linear Regression? Linear regression is a machine learning concept that is used to build or train the models (mathematical models or equations)  for solving supervised learning problems related to predicting continuous numerical value. Supervised learning problems …

Continue reading

Posted in AI, Data Science, Machine Learning. Tagged with , , , .

Overfitting & Underfitting in Machine Learning

Overfitting and underfitting represented using Model error vs complexity plot

The performance of the machine learning models depends upon two key concepts called underfitting and overfitting. In this post, you will learn about some of the key concepts of overfitting and underfitting in relation to machine learning models. In addition, you will also get a chance to test your understanding by attempting the quiz. The quiz will help you prepare well for interview questions in relation to underfitting & overfitting. As data scientists, you must get a good understanding of the overfitting and underfitting concepts.  Introduction to Overfitting & Underfitting Assuming an independent and identically distributed (I.I.d) dataset, when the prediction error on both the training and validation dataset is …

Continue reading

Posted in Data Science, Interview questions, Machine Learning. Tagged with , , .

Python – Creating Scatter Plot with IRIS Dataset

scatter-plot-with-IRIS-dataset-using-Python

In this blog post, we will be learning how to create a Scatter Plot with the IRIS dataset using Python. The IRIS dataset is a collection of data that is used to demonstrate the properties of various statistical models. It contains information about 50 observations on four different variables: Petal Length, Petal Width, Sepal Length, and Sepal Width. As data scientists, it is important for us to be able to visualize the data that we are working with. Scatter plots are a great way to do this because they show the relationship between two variables. In this post, we have plotted and explored how how Petal Length and Sepal Length …

Continue reading

Posted in Data Science, Python. Tagged with , , .

Supervised & Unsupervised Learning Difference

Supervised vs Unsupervised Machine Learning Problems

Supervised and unsupervised learning are two different common types of machine learning tasks that are used to solve many different types of business problems. Supervised learning uses training data with labels to create supervised models, which can be used to predict outcomes for future datasets. Unsupervised learning is a type of machine learning task where the training data is not labeled or categorized in any way. For beginner data scientists, it is very important to get a good understanding of the difference between supervised and unsupervised learning. In this post, we will discuss how supervised and unsupervised algorithms work and what is difference between them. You may want to check …

Continue reading

Posted in AI, Data Science, Machine Learning. Tagged with , .

Logit vs Probit Models: Differences, Examples

Logit vs probit models

Logit and probit models are statistical models that are used to model binary or dichotomous dependent variables. This means that the outcome of interest can only take on two possible values. In most cases, these models are used to predict whether or not something will happen. For example, a business might want to know if a particular advertising campaign will lead to an increase in sales. In this blog post, we will explain what logit and probit models are, and we will provide examples of how they can be used. As data scientists, it is important to understand the concepts of logit and probit models and when should they be …

Continue reading

Posted in Data Science, Machine Learning, statistics. Tagged with , .

Types of Probability Distributions: Codes, Examples

uniform probability distribution plot

In this post, you will learn the definition of 25 different types of probability distributions. Probability distributions play an important role in statistics and in many other fields, such as economics, engineering, and finance. They are used to model all sorts of real-world phenomena, from the weather to stock market prices. Before we get into understanding different types of probability distributions, let’s understand some fundamentals. If you are a data scientist, you would like to go through these distributions. This page could also be seen as a cheat sheet for probability distributions. What are Probability Distributions? Probability distributions are a way of describing how likely it is for a random …

Continue reading

Posted in AI, Data Science, Machine Learning, statistics. Tagged with , , .

Cross Entropy Loss Explained with Python Examples

In this post, you will learn the concepts related to the cross-entropy loss function along with Python code examples and which machine learning algorithms use the cross-entropy loss function as an objective function for training the models. Cross-entropy loss is used as a loss function for models which predict the probability value as output (probability distribution as output). Logistic regression is one such algorithm whose output is a probability distribution. You may want to check out the details on how cross-entropy loss is related to information theory and entropy concepts – Information theory & machine learning: Concepts What’s Cross-Entropy Loss? Cross-entropy loss, also known as negative log likelihood loss, is …

Continue reading

Posted in Data Science, Machine Learning. Tagged with , .

Accuracy, Precision, Recall & F1-Score – Python Examples

Classification models are used in classification problems to predict the target class of the data sample. The classification model predicts the probability that each instance belongs to one class or another. It is important to evaluate the performance of the classifications model in order to reliably use these models in production for solving real-world problems. Performance measures in machine learning classification models are used to assess how well machine learning classification models perform in a given context. These performance metrics include accuracy, precision, recall, and F1-score. Because it helps us understand the strengths and limitations of these models when making predictions in new situations, model performance is essential for machine learning. …

Continue reading

Posted in Data Science, Machine Learning, Python. Tagged with , , , .

AI Product Manager Interview Questions

interview questions for machine learning

AI has become such an integral part of our lives that it is important to hire professionals who can help create AI / machine learning products that will be used by many people. These AI product manager interview questions will give you insight into your product manager candidate’s experience, skills, and industry knowledge so that you can get prepared in a better manner before appearing for your next interview as an AI product manager. Check out a detailed interview questions and answers with greater focus on machine learning topics. Before getting into the list of interview questions, lets understand what can be the job description of an AI product manager. …

Continue reading

Posted in AI, Career Planning, Interview questions, Machine Learning, Product Management. Tagged with , , .

Procurement Advanced Analytics Use Cases

procurement analytics use cases

The procurement analytics applications are poised to grow exponentially in the next few years. With so much data available and the need for digital transformation across procurement organization, it’s important to know how procurement analytics can help you make better business decisions. This blog will cover procurement analytics and key use cases of advanced analytics that will be useful for business stakeholders such as category managers, sourcing managers, supplier relationship managers, business analysts / product managers, and data scientists implement different use cases using machine learning. Procurement analytics will allow you to use data very effectively in achieving data-driven decision making.  One can get started with procurement analytics with dashboards …

Continue reading

Posted in Data Science, Machine Learning, Procurement. Tagged with , , .

Instance-based vs Model-based Learning: Differences

model based learning example

Machine learning is a field of artificial intelligence that deals with giving machines the ability to learn without being explicitly programmed. In this context, instance-based learning and model-based learning are two different approaches used to create machine learning models. While both approaches can be effective, they also have distinct differences that must be taken into account when building a machine learning system. Let’s explore the differences between these two types of machine learning. What is instance-based learning & how does it work? Instance-based learning (also known as memory-based learning or lazy learning) involves memorizing training data in order to make predictions about future data points. This approach doesn’t require any …

Continue reading

Posted in Data Science, Machine Learning. Tagged with , .

Different types of Clustering in Machine Learning

Different types of clustering

Clustering is a type of unsupervised machine learning technique that is used to group data points into distinct categories or clusters. It is one of the most widely used techniques in machine learning and can be used for various tasks such as grouping customers by their buying habits, creating groups of similar documents, or finding groups of related genes. In this blog post, we will explore different types / categories of clustering methods and discuss why they are so important in the field of machine learning. Prototype-based Clustering Prototype based clustering represents one of the categories of clustering algorithms that are used to identify groups within a larger dataset. This …

Continue reading

Posted in Machine Learning. Tagged with , , .

Python Pickle Example: What, Why, How

python pickle file example

Have you ever heard of the term “Python Pickle“? If not, don’t feel bad—it can be a confusing concept. However, it is a powerful tool that all data scientists, Python programmers, and web application developers should understand. In this article, we’ll break down what exactly pickling is, why it’s so important, and how to use it in your projects. What is Python Pickle? In its simplest form, pickling is the process of converting any object into a byte stream (a sequence of bytes). This byte stream can then be transmitted over a network or stored in a file for later use. It’s like putting the object into an envelope and …

Continue reading

Posted in Data Science, Machine Learning, Python. Tagged with , , .

Feature Importance & Random Forest – Python

Random forest for feature importance

In this post, you will learn about how to use Random Forest Classifier (RandomForestClassifier) for determining feature importance using Sklearn Python code example. This will be useful in feature selection by finding most important features when solving classification machine learning problem. It is very important to understand feature importance and feature selection techniques for data scientists to use most appropriate features for training machine learning models. Recall that other feature selection techniques includes L-norm regularization techniques, greedy search algorithms techniques such as sequential backward / sequential forward selection etc.  What & Why of Feature Importance? Feature importance is a key concept in machine learning that refers to the relative importance of each feature …

Continue reading

Posted in Data Science, Machine Learning, Python. Tagged with , , .