Category Archives: Data Science

Quantum machine learning: Concepts and Examples

quantum machine learning hello world concepts and examples

Machine learning has been a hot topic for many years now. There are different types of machine learning algorithms that data scientists and engineers use in their projects, depending on the type of problem they’re trying to solve. Recently, quantum machine learning has emerged as an alternative to classical machine learning techniques. The future of quantum computing holds tremendous possibilities promising exponential speedups over current technology. In this blog post, we’ll explore quantum machine learning (QML), its benefits over traditional machine learning methods, and the common quantum computing concepts it relies on. What are key concepts related to quantum computing? Quantum computing takes advantage of the computing power available through …

Continue reading

Posted in Data Science, Machine Learning, Quantum Computing. Tagged with , , .

Supplier Relationship Management & Machine Learning

supplier relationship management machine learning

Supplier relationship management (SRM) is the process of managing supplier relationships to develop and maintain a strategic procurement partnership. SRM includes focus areas such as supplier selection, procurement strategy development, procurement negotiation, and performance measurement and improvement. SRM has been around for over 20 years but we are now seeing new technologies such as machine learning come into play. What exactly does advanced analytics such as artificial intelligence (AI) / machine learning (ML) have to do with SRM? And how will AI/ML technologies transform procurement? What are some real-world machine learning use cases related to supplier relationships management? What are a few SRM KPIs/metrics which can be tracked by leveraging …

Continue reading

Posted in Artificial Intelligence, Data Science, Machine Learning, Procurement. Tagged with , , .

What is Machine Learning? Concepts & Examples

what is machine learning

Machine learning is a machine’s ability to learn from data. It has been around for decades, but machine learning is now being applied in nearly every industry and job function. In this blog post, we’ll cover what machine learning entails, how it differs from traditional programming. What is machine learning? Simply speaking, machine learning is a technology where in machine learns to perform a prediction/estimation task based on past experience represented by historical data set.  There are three key aspects of machine learning which are following: Task: Task can be related to prediction problems  Experience: Experience represents historical dataset Performance: The goal is to perform better in the prediction task …

Continue reading

Posted in Data Science, Deep Learning, Machine Learning. Tagged with , , .

Covid-19 Machine Learning Use Cases

covid19 machine learning use cases

The covid-19 virus is a type of coronavirus. It has been linked to severe acute respiratory syndrome (SARS). The covid-19 virus can be contracted through contact with saliva or mucous from an infected person. Symptoms include fever, cough, sore throat, headache, muscle aches, and fatigue. There are several problems related to the Covid-19 pandemic which can be solved using machine learning/data science techniques. In this blog post, we will look into some of these Covid-19 use cases which can be solved using machine learning classification and clustering techniques. What are Covid-19 data sets publicly available? One of the datasets available for studying Covid-19 is GISAID data (https://www.gisaid.org/) that represents million …

Continue reading

Posted in Data Science, Healthcare, Machine Learning. Tagged with , .

Hidden Markov Models Explained with Examples

hidden markov model

Hidden Markov models (HMMs) are a type of statistical modeling that has been used for several years. They have been applied in different fields such as medicine, computer science, and data science. The Hidden Markov model (HMM) is the foundation of many modern-day data science algorithms. It has been used in data science to make efficient use of observations for successful predictions or decision-making processes. This blog post will cover hidden Markov models with real-world examples and important concepts related to hidden Markov models. What are Markov Models? Markov models are statistical models that are used to predict the next state based on the current hidden or observed states. Markov …

Continue reading

Posted in Data Science, Python. Tagged with .

CNN Basic Architecture for Classification & Segmentation

image classification object detection image segmentation

Convolutional neural networks (CNNs) are deep neural networks that have the capability to classify and segment images. CNNs can be trained using supervised or unsupervised machine learning methods, depending on what you want them to do. CNN architectures for classification and segmentation include a variety of different layers with specific purposes, such as a convolutional layer, pooling layer, fully connected layers, dropout layers, etc. In this blog post, we will go over how CNNs work in detail for classification and segmentation problems. Description of basic CNN architecture for Classification The CNN architecture for classification includes convolutional layers, max-pooling layers, and fully connected layers. Convolution and max-pooling layers are used for …

Continue reading

Posted in Data Science, Deep Learning, Machine Learning. Tagged with , , .

Graph Neural Networks Explained with Examples

Training a graph neural network model

Graph neural networks (GNNs) are a relatively new area in the field of deep learning. They arose from graph theory and machine learning, where the graph is a mathematical structure that models pairwise relations between objects. Graph Neural Networks are able to learn graph structures for different data sets, which means they can generalize well to new datasets – this makes them an ideal choice for many real-world problems like social network analysis or financial risk prediction. This post will cover some of the key concepts behind graph neural networks with the help of multiple examples. What are graph neural networks (GNNs)? Graphs are data structures which are used to …

Continue reading

Posted in Data Science, Deep Learning. Tagged with , .

Digital Transformation Strategy: What, Why & How?

digital transformation what why and how

Digital transformation is a digital strategy that aims to change the way an organization operates. It’s not just about digital marketing anymore- digital transformation includes all aspects of digital engagement from customer service, product development, and delivery, operations, etc. And it requires a holistic approach to digital transformation without any silos or strategic gaps in between departments. In this blog post, we will cover what digital transformation is and why organizations should take advantage of this strategy. We’ll also look at how digital transformation is happening in different industries. What is digital transformation? Digital transformation is a digital strategy that aims to change the way an organization operates. It helps …

Continue reading

Posted in Data Science. Tagged with , .

Data Storytelling Explained with Examples

MS Dhoni - Former Captain of Indian Cricket Team

Have you ever told a story to someone, but they just didn’t seem to understand it? They might have been confused about the plot or why the characters acted in certain ways. If this has happened to you before, then you are not alone. Many people struggle with data storytelling because they do not know how to communicate their data effectively.  In this blog post, you will learn about some of the key concepts in relation to data storytelling and why data scientists / data analyst should acquire this skill. Data storytelling is one of the key skills which data scientists would need to acquire in order to do a …

Continue reading

Posted in Data Science. Tagged with .

14 Python Automl Frameworks Data Scientists Can Use

Python automl frameworks

In this post, you will learn about Automated Machine Learning (AutoML) frameworks for Python that can use to train machine learning models. For data scientists, especially beginners, who are unfamiliar with Automl, it is a tool designed to make the process of generating machine learning models in an automated manner, user-friendly, and less time-consuming. The goal of Automl is not just about making it easier for machine learning (ML) developers but also democratizing access to model development. What is AutoML? AutoML refers to automating some or all steps of building machine learning models, including selection and configuration of training data, tuning the performance metric(s), selecting/constructing features, training multiple models, evaluating …

Continue reading

Posted in Data Science, Machine Learning, Python. Tagged with , , .

20 Amazon (AWS) Machine Learning Services to Know

amazon machine learning services

Amazon Web Services is a cloud computing platform that offers machine learning as one of its many services. AWS has been around for over 10 years and has helped data scientists leverage the amazon cloud to train machine learning models. AWS provides an easy-to-use interface that helps data scientists build, test, and deploy their machine learning models with ease. AWS also provides access to pre-trained machine learning models so you can start building your model without having to spend time training it first! What are different AWS cloud services for machine learning? The following is a list of Amazon cloud services for machine learning. As data scientists, it is of …

Continue reading

Posted in AWS, Cloud, Data Science, Machine Learning. Tagged with , , .

Data Analytics – Different Career Options / Opportunities

data analytics career options

Data analytics career paths span a wide range of career options, from data scientist to data engineer. Data scientists are often interested in what they can do with the data that is analyzed, while data engineers are more focused on the analysis itself. Whether you’re looking for a career as a data scientist, data analyst, ML engineer, or AI researcher, there’s something for everyone! In this blog post, we will different types of jobs and careers available to those interested in data analytics and data science. What are some of the career paths in data analytics? Here are different career paths for those interested in data analytics career: Data Scientists: …

Continue reading

Posted in AI, Career Planning, Data analytics, data engineering, Data Science, Machine Learning. Tagged with , , , .

Using Theory of Change to Design Data-driven Solutions

theory of change for data-driven decision making

Have you ever wanted to design a solution for an issue but weren’t sure how to do it? One theory that can help is the theory of change. The theory of change provides a framework for designing solutions by focusing on the steps needed to achieve desired outcomes or results. It also helps identify what needs to happen in order for the solution to be implemented successfully and realizing the desired outcomes. The theory of change when combined with data-driven decision making can result in great impact. In order to design solutions that have an impact and are sustainable, it is important to understand the theory of change as well …

Continue reading

Posted in Data analytics, Data Science. Tagged with , , .

Key techniques for Evaluating Machine Learning models

AUC-ROC curve

Machine learning is a powerful machine intelligence technique that can be used to develop predictive models for different types of data. It has become the backbone of many intelligent applications and evaluating machine learning model performance at a regular intervals is key to success of such applications. A machine learning model’s performance depends on several factors including the type of algorithm used, how well it was trained and more. In this blog post, we will discuss  essential techniques for evaluating machine-learning model performance in order to provide you with some best practices when working with machine-learning models. The following are different techniques that can be used for evaluating machine learning …

Continue reading

Posted in Data Science, Machine Learning. Tagged with , .

Accuracy, Precision, Recall & F1-Score – Python Examples

Performance measures in machine learning are used to assess how well machine learning algorithms perform in a given context. These include accuracy, precision, recall and F1-score. Because it helps us understand the strengths and limitations of these models when making predictions in new situations, model performance is essential for machine learning. In this blog post we will explore these four machine learning model performance metrics through Python Sklearn example. Accuracy score Precision score Recall score F1-Score As a data scientist, you must get a good understanding of concepts related to the above in relation to measuring classification model performance. Lets work with Sklearn datasets for breast cancer. You can load the …

Continue reading

Posted in Data Science, Machine Learning, Python. Tagged with , , , .

Top 50 Interview Questions for Beginner Data Scientists

interview questions for machine learning

What interview questions should a beginner data scientist prepare for? This is an important question that many interviewees have. If you are going for a data scientist interview and don’t know what interview questions will you be asked, this blog post has some of the common interview questions that will help you excel in your interview. These interview questions are perfect for beginners because they cover basic topics about data science and machine learning and how it works. We hope this list helps! What is the difference between AI, machine learning, deep learning? Do you know how machine learning works? How is machine learning different from statistical modeling techniques like linear …

Continue reading

Posted in Data Science, Interview questions, Machine Learning. Tagged with , , .