What are Actionable Insights: Examples & Concepts

actionable insights concepts examples

The idea of actionable insights is something that has gone mainstream across different departments in any and every business. Actionable insights are at the heart of many successful business decisions, and are used to help your company grow further than ever before. Actionable insights are key to any data analytics initiatives. Analytics centered around actionable insights is also termed actionable analytics. In this blog post, actionable insights are explained with examples along with few actionable analytics tools which are used when dealing with actionable insights. What are actionable insights? Actionable insights are defined as insights which can help in making decisions and taking action. Actionable insights can be used to …

Continue reading

Posted in Data analytics. Tagged with .

How to Create Data-Driven Culture: Key Steps

how to create data-driven culture

In today’s competitive business environment, companies are looking for the cutting edge they can get to stay ahead. One of the ways to beat the competition is by establishing a culture of data-driven decision making. In this blog post, we will explore how to create a data-driven culture that values data analytics and provides actionable insights into what needs to be done next in order to create a future-ready digital organization. What is data-driven culture? Data-driven culture is about creating an organization that is data-driven, where everything from business processes to culture supports the need for data-based decision making. In other words, every step of a business process must be …

Continue reading

Posted in Data, Data analytics. Tagged with .

Overfitting & Underfitting Concepts & Interview Questions

Overfitting and underfitting represented using Model error vs complexity plot

Machine learning models are built to learn from training and test data and make predictions on new, unseen data set. The machine learning model is said to overfit the data when it learns patterns that exist only in the training set make prediction with high accuracy. On the other hand, machine learning model underfits if it cannot find any pattern or relationship between variables in both training and testing data sets. In this post, you will learn about some of the key concepts of overfitting and underfitting in relation to machine learning models. In addition, you will also get a chance to test you understanding by attempting the quiz. The …

Continue reading

Posted in Data Science, Interview questions, Machine Learning. Tagged with , , .

Data Readiness Levels Assessment: Concepts

data readiness levels assessment

Data readiness levels (DRLs) and related assessments are an important part of data analytics. Data readiness levels is a concept where different stages represent the quality and maturity of data. Data science is becoming increasingly popular, but not all companies have the right level of data readiness for this type of work. Performing data readiness levels assessment is important because it gives an insight into the quality and quantity of your current datasets and helps determine future success of the data analytics project. This blog post will explain what data readiness levels are and why assessment tests are important in relation to them. What are data readiness levels? Data readiness …

Continue reading

Posted in Data, Data analytics, Data Science. Tagged with , .

Data Science / AI Team Structure – Roles & Responsibilities

Data Science Team Roles & Responsibilities

Setting up a successful artificial intelligence (AI) / data science or advanced analytics practice or center of excellence (CoE) is key to success of AI in your organization. In order to setup a successful data science COE, setting up a well-organized data science team with clearly defined roles & responsibilities is the key. Are you planning to set up the AI or data science team in your organization, and hence, looking for some ideas around data science team structure and related roles and responsibilities? In this post, you will learn about some of the following aspects related to the building data science/machine learning team. Focus areas Roles & responsibilities Data Science Team – Focus …

Continue reading

Posted in AI, Data Science, Machine Learning. Tagged with , , , .

Sentiment Analysis & Machine Learning Techniques

sentiment analysis machine learning

Artificial intelligence (AI) / Machine learning (ML) techniques are getting more and more popular. Many people use machine learning to analyze the sentiment of tweets, for example, to make predictions related to different business areas. In this blog post, you will learn about different machine learning / deep learning and NLP techniques which can be used for sentiment analysis. What is sentiment analysis? Sentiment analysis is about predicting the sentiment of a piece of text and then using this information to understand users’ (such as customers) opinions. . The principal objective of sentiment analysis is to classify the polarity of textual data, whether it is positive, negative, or neutral. Whether …

Continue reading

Posted in AI, Deep Learning, Machine Learning, NLP. Tagged with , , .

Leading & Lagging KPIs – Concepts & Examples

kpi concepts and examples leading lagging KPIs

Key performance indicators (KPIs) are important for any organization. They measure the success or failure of an initiative with specific metrics and can be used to make informed decisions about future strategies. However, there is no one single definition of what a KPI is; instead, they come in many forms. KPIs are key metrics for product and project managers and are used to track the success of products and projects. This blog post will explore two types of KPIs – leading KPIs and lagging KPIs – as well as provide some examples. What are KPIs? KPIs are defined as a quantitative measure that indicates the performance of a project or …

Continue reading

Posted in Product Management. Tagged with , .

ESG Metrics & KPIs: What ESG team Needs to Know

ESG KPIs and metrics

This blog post is geared towards ESG professionals primarily associated with the procurement department in any organization. ESG initiatives are important for organizations to measure their ESG performance. It is of utmost importance to understand ESG KPIs / metrics and how to track ESG metrics. ESGs can help companies improve their operational efficiencies, environmental impact, financial position, governance, transparency, and societal contributions while managing risks. Data analytics can play key role in identifying KPIs, data needed for that KPIs and building dashboards for tracking those KPIs. What is ESG? ESG is an acronym that stands for Environment, Social, and Governance. ESGs encompass issues such as ethics, diversity, social justice, employee …

Continue reading

Posted in Data analytics, Procurement. Tagged with , .

Clinical Trials & Predictive Analytics Use Cases

clinical trials predictive analytics machine learning use cases

Analytics plays a big role in modeling clinical trials and predictive analytics is one such technique that has been embraced by clinical researchers. Machine learning algorithms can be applied at various stages in the drug discovery process – from early compound selection to clinical trial simulation. Data scientists have been applying machine learning algorithms to clinical trial data in order to identify predictive patterns and correlations between clinical outcomes, patient demographics, drug response phenotypes, medical history, and genetic information. Predictive analytics has the potential to enhance clinical research by helping accelerate clinical trials through predictive modeling of clinical outcome probability for better treatment decisions with reduced clinical trial costs. In …

Continue reading

Posted in Data Science, Healthcare, Machine Learning, Pharma. Tagged with , , .

Local & Global Minima Explained with Examples

Optimization problems containing many local minima remains a critical problem in a variety of domains, including operations research, informatics, and material design. Efficient global optimization remains a problem of general research interest, with applications to a range of fields including operations design, network analysis, and bioinformatics. Within the fields of chemical physics and material design, efficient global optimization is particularly important for finding low potential energy configurations of isolated groups of atoms (clusters) and periodic systems (crystals). In case of Machine learning (ML) algorithms, theer is a need for optimising (minimising) the cost or loss function. In order to become very good at finding solutions to optimisation problems (relating to minimising …

Continue reading

Posted in Data Science. Tagged with , .

Most Common Machine Learning Tasks

common machine learning tasks

This article represents some of the most common machine learning tasks that one may come across while trying to solve machine learning problems. Under each task are also listed a set of machine learning methods that could be used to resolve these tasks. Please feel free to comment/suggest if I missed mentioning one or more important points. Also, sorry for the typos. You might want to check out the post on what is machine learning?. Different aspects of machine learning concepts have been explained with the help of examples. Here is an excerpt from the page: Machine learning is about approximating mathematical functions (equations) representing real-world scenarios. These mathematical functions …

Continue reading

Posted in AI, Big Data, Data Science, Machine Learning. Tagged with , .

Pricing Optimization & Machine Learning Techniques

pricing optimization and machine learning use cases

Pricing is a critical component of price optimization. In this blog post, we will dive into pricing optimization techniques and machine learning use cases. Price optimization techniques are used to optimize pricing for products or services based on customer response. AI / Machine learning can be leveraged in pricing optimization by using predictive analytics to predict consumer demand patterns and identify optimal prices for a products or services at a given time in the future. What is pricing optimization? Pricing optimization is the process of pricing goods and services to maximize profits by taking into account various pricing factors. These pricing factors can include but are not limited to, competitor …

Continue reading

Posted in Machine Learning, Optimization. Tagged with , .

Binomial Distribution Explained with Examples

binomial experiment coin tossing 100 experiments 50 trials

The binomial distribution is a probability distribution that applies to binomial experiments. It’s the number of successes in a specific number of tries. The binomial distribution may be imagined as the probability distribution of a number of heads that appear on a coin flip in a specific experiment comprising of a fixed number of coin flips. In this blog post, we will learn binomial distribution with the help of examples. If you are an aspiring data scientist looking forward to learning/understand the binomial distribution in a better manner, this post might be very helpful. What is a Binomial Distribution? The binomial distribution is a discrete probability distribution that represents the probabilities of binomial random …

Continue reading

Posted in AI, Data Science, Machine Learning, statistics. Tagged with , , .

Procure-to-pay Processes & Machine Learning

procure to pay machine learning use cases

The procure-to-pay (P2P) cycle or process consists of a set of steps that must be taken in order for an organization to procure and pay for goods and services. Procurement is the process by which organizations purchase goods, supplies, equipment, or services from outside sources. The procurement function may also serve as an intermediary between two internal departments or divisions that have overlapping needs. In this blog post, we will discuss how AI / machine learning can be leveraged to automate certain procure-to-pay processes such that procure-to-pay teams can focus on core business goals. What is the procure-to-pay cycle or process? The procure-to-pay (P2P) cycle or process is defined as …

Continue reading

Posted in AI, Machine Learning, Procurement. Tagged with , , .

Python – Replace Missing Values with Mean, Median & Mode

Boxplot for deciding whether to use mean, mode or median for imputation

Missing values are common in dealing with real-world problems when the data is aggregated over long time stretches from disparate sources, and reliable machine learning modeling demands for careful handling of missing data. One strategy is imputing the missing values, and a wide variety of algorithms exist spanning simple interpolation (mean. median, mode), matrix factorization methods like SVD, statistical models like Kalman filters, and deep learning methods. Missing value imputation or replacing techniques help machine learning models learn from incomplete data. There are three main missing value imputation techniques – mean, median and mode. Mean is the average of all values in a set, median is the middle number in …

Continue reading

Posted in Data Science, Machine Learning, Python. Tagged with , , .

Building Machine Learning Models & Dev Challenges

machine learning models development and deployment challenges

The machine learning models and AI implementation industry is booming. The demand for machine learning models has never been higher, but the challenges of machine learning development and deployment have also increased. In this post, we will discuss a few common machine learning development and deployment challenges. In future blogs, we will learn about solutions to overcome these challenges. This blog post will help you learn and understand some of the key challenges that you may face if you are planning to start machine learning practice in your organization. These challenges are also very much relevant if you have machine learning engineers and data scientists working across different offices/locations on …

Continue reading

Posted in Data Science, Machine Learning. Tagged with , .