Tag Archives: machine learning

Sentiment Analysis & Machine Learning Techniques

sentiment analysis machine learning

Artificial intelligence (AI) / Machine learning (ML) techniques are getting more and more popular. Many people use machine learning to analyze the sentiment of tweets, for example, to make predictions related to different business areas. In this blog post, you will learn about different machine learning / deep learning and NLP techniques which can be used for sentiment analysis. What is sentiment analysis? Sentiment analysis is about predicting the sentiment of a piece of text and then using this information to understand users’ (such as customers) opinions. . The principal objective of sentiment analysis is to classify the polarity of textual data, whether it is positive, negative, or neutral. Whether …

Continue reading

Posted in AI, Deep Learning, Machine Learning, NLP. Tagged with , , .

Clinical Trials & Predictive Analytics Use Cases

clinical trials predictive analytics machine learning use cases

Analytics plays a big role in modeling clinical trials and predictive analytics is one such technique that has been embraced by clinical researchers. Machine learning algorithms can be applied at various stages in the drug discovery process – from early compound selection to clinical trial simulation. Data scientists have been applying machine learning algorithms to clinical trial data in order to identify predictive patterns and correlations between clinical outcomes, patient demographics, drug response phenotypes, medical history, and genetic information. Predictive analytics has the potential to enhance clinical research by helping accelerate clinical trials through predictive modeling of clinical outcome probability for better treatment decisions with reduced clinical trial costs. In …

Continue reading

Posted in Data Science, Healthcare, Machine Learning, Pharma. Tagged with , , .

Pricing Optimization & Machine Learning Techniques

pricing optimization and machine learning use cases

Pricing is a critical component of price optimization. In this blog post, we will dive into pricing optimization techniques and machine learning use cases. Price optimization techniques are used to optimize pricing for products or services based on customer response. AI / Machine learning can be leveraged in pricing optimization by using predictive analytics to predict consumer demand patterns and identify optimal prices for a products or services at a given time in the future. What is pricing optimization? Pricing optimization is the process of pricing goods and services to maximize profits by taking into account various pricing factors. These pricing factors can include but are not limited to, competitor …

Continue reading

Posted in Machine Learning, Optimization. Tagged with , .

Binomial Distribution Explained with Examples

binomial experiment coin tossing 100 experiments 50 trials

The binomial distribution is a probability distribution that applies to binomial experiments. It’s the number of successes in a specific number of tries. The binomial distribution may be imagined as the probability distribution of a number of heads that appear on a coin flip in a specific experiment comprising of a fixed number of coin flips. In this blog post, we will learn binomial distribution with the help of examples. If you are an aspiring data scientist looking forward to learning/understand the binomial distribution in a better manner, this post might be very helpful. What is a Binomial Distribution? The binomial distribution is a discrete probability distribution that represents the probabilities of binomial random …

Continue reading

Posted in AI, Data Science, Machine Learning, statistics. Tagged with , , .

Procure-to-pay Processes & Machine Learning

procure to pay machine learning use cases

The procure-to-pay (P2P) cycle or process consists of a set of steps that must be taken in order for an organization to procure and pay for goods and services. Procurement is the process by which organizations purchase goods, supplies, equipment, or services from outside sources. The procurement function may also serve as an intermediary between two internal departments or divisions that have overlapping needs. In this blog post, we will discuss how AI / machine learning can be leveraged to automate certain procure-to-pay processes such that procure-to-pay teams can focus on core business goals. What is the procure-to-pay cycle or process? The procure-to-pay (P2P) cycle or process is defined as …

Continue reading

Posted in AI, Machine Learning, Procurement. Tagged with , , .

Python – Replace Missing Values with Mean, Median & Mode

Boxplot for deciding whether to use mean, mode or median for imputation

Missing values are common in dealing with real-world problems when the data is aggregated over long time stretches from disparate sources, and reliable machine learning modeling demands for careful handling of missing data. One strategy is imputing the missing values, and a wide variety of algorithms exist spanning simple interpolation (mean. median, mode), matrix factorization methods like SVD, statistical models like Kalman filters, and deep learning methods. Missing value imputation or replacing techniques help machine learning models learn from incomplete data. There are three main missing value imputation techniques – mean, median and mode. Mean is the average of all values in a set, median is the middle number in …

Continue reading

Posted in Data Science, Machine Learning, Python. Tagged with , , .

Building Machine Learning Models & Dev Challenges

machine learning models development and deployment challenges

The machine learning models and AI implementation industry is booming. The demand for machine learning models has never been higher, but the challenges of machine learning development and deployment have also increased. In this post, we will discuss a few common machine learning development and deployment challenges. In future blogs, we will learn about solutions to overcome these challenges. This blog post will help you learn and understand some of the key challenges that you may face if you are planning to start machine learning practice in your organization. These challenges are also very much relevant if you have machine learning engineers and data scientists working across different offices/locations on …

Continue reading

Posted in Data Science, Machine Learning. Tagged with , .

Bagging Classifier Python Code Example

Bagging Classifier explained with Python code examples

Bagging is a type of ensemble machine learning approach that combines the outputs from many learner to improve performance. These algorithms function by breaking down the training set into subsets and running them through various machine-learning models, after which combining their predictions when they return together to generate an overall prediction for each instance in the original data. In this blog post, you will learn about the concept of Bagging along with Bagging Classifier Python code example.  Bagging is commonly used in machine learning for classification problems, particularly when using decision trees or artificial neural networks as part of a boosting ensemble. It has been applied to various machine-learning algorithms including decision stumps, …

Continue reading

Posted in Data Science, Machine Learning, Python. Tagged with , , , .

Demand Forecasting & Machine Learning Techniques

demand forecasting machine learning use cases

Machine learning is a technology that can be used for demand forecasting in order to make demand forecasts more accurate and reliable. In demand forecasting, machine learning techniques are used to forecast demand for a product or service. There are different types of machine learning/deep learning techniques used in demand forecastings such as neural networks, support vector machines, time series forecasting, and regression analysis. This blog post will introduce different machine learning & deep learning techniques for demand forecasting and give an overview of how they work. What is the demand forecasting process? The demand forecasting process is defined as the creation of demand forecasts, demand planning, and demand decision …

Continue reading

Posted in AI, Data Science, Machine Learning. Tagged with , , .

Agriculture Use Cases & Machine Learning Applications

machine learning applications for agriculture use cases

Today agriculture is in a state of flux. Farmers are faced with the challenges of producing more food in face of a changing climate and population growth, while also adapting to evolving technologies that have changed agriculture forever. Machine learning has been applied to agriculture for many different use cases, from irrigation scheduling to pest management. In this post, we will explore agriculture use cases for machine learning & deep learning that can help farmers meet these challenges head-on. Different machine learning applications can be built around these agricultural use cases. It will be helpful for data scientists to get a high level idea around use cases and related machine …

Continue reading

Posted in Agriculture, Data Science, Deep Learning, Machine Learning. Tagged with , , .

Credit Card Fraud Detection & Machine Learning

credit card fraud detection machine learning

Credit card fraud detection is a major concern for credit card companies. With credit cards so prevalent in our society, credit card companies must be able to prevent credit card fraud and protect their customers. Machine learning techniques can provide a powerful and effective way of detecting credit card fraud. In this blog post we will discuss machine learning techniques that data scientists can use to design appropriate credit card fraud detection solutions including algorithms such as Bayesian networks, support vector machines, neural networks and decision trees. What are different types of credit card fraud? The following are different types of credit card fraud: Counterfeit credit cards: Counterfeit credit cards …

Continue reading

Posted in Data Science, Deep Learning, Machine Learning. Tagged with , , .

BigQuery ML Concepts & Examples: Starter Guide

google cloud bigquery ml

BigQuery ML is a machine learning platform that allows data scientists to build models using the power of their data. Unlike traditional machine learning, BigQuery ML does not require any programming skills, making it an easy way to get started with machine learning. Product managers and data scientists can both benefit from BigQuery ML by finding insights in their own datasets or collaborating with one another on new applications. The introduction of BigQuery Machine Learning Platform has enabled organizations to take advantage of the benefits of machine learning without needing deep expertise in either big-data or analytics technologies. This blog post will provide an overview of what you need to …

Continue reading

Posted in Google Cloud, Machine Learning. Tagged with , .

Quantum machine learning: Concepts and Examples

quantum machine learning hello world concepts and examples

Machine learning has been a hot topic for many years now. There are different types of machine learning algorithms that data scientists and engineers use in their projects, depending on the type of problem they’re trying to solve. Recently, quantum machine learning has emerged as an alternative to classical machine learning techniques. The future of quantum computing holds tremendous possibilities promising exponential speedups over current technology. In this blog post, we’ll explore quantum machine learning (QML), its benefits over traditional machine learning methods, and the common quantum computing concepts it relies on. What are key concepts related to quantum computing? Quantum computing takes advantage of the computing power available through …

Continue reading

Posted in Data Science, Machine Learning, Quantum Computing. Tagged with , , .

Relationship: Analytics & Data-Driven Decision Making

analytics and data-driven decision making relationship

Data analytics is a topic that many data-driven organizations are becoming increasingly interested in. Data analytics often includes the process of analyzing data to find insights that can be used to make decisions. But what does this mean? How are different types of analytics related to data-driven decision-making? This blog post will explore how an organization’s use of data can help them make better, more informed decisions. Before getting into the details, lets quickly understand how business analytics is related data analytics. There are a number of facets that business analytics and data analytics have in common. In both the cases, the common steps include dealing with gathering data from …

Continue reading

Posted in Data analytics. Tagged with , .

Covid-19 Machine Learning Use Cases

covid19 machine learning use cases

The covid-19 virus is a type of coronavirus. It has been linked to severe acute respiratory syndrome (SARS). The covid-19 virus can be contracted through contact with saliva or mucous from an infected person. Symptoms include fever, cough, sore throat, headache, muscle aches, and fatigue. There are several problems related to the Covid-19 pandemic which can be solved using machine learning/data science techniques. In this blog post, we will look into some of these Covid-19 use cases which can be solved using machine learning classification and clustering techniques. What are Covid-19 data sets publicly available? One of the datasets available for studying Covid-19 is GISAID data (https://www.gisaid.org/) that represents million …

Continue reading

Posted in Data Science, Healthcare, Machine Learning. Tagged with , .

Federated Analytics & Learning Explained with Examples

federated machine learning

Federated learning is proposed as an alternative to centralized machine learning since its client-server structure provides better privacy protection and scalability in real-world applications. It is experiencing a fast boom with the wave of distributed machine learning and ever-increasing privacy concerns. With the increased computing and communicating capabilities of edge and IoT devices, applying federated learning on heterogeneous devices to train machine learning models is becoming a trend. The federated analytics approach enables extracting insights from data residing on different systems without requiring the data to be brought to the central location. By leveraging these different data sources, federated analytics can provide powerful insights in relation to different areas such …

Continue reading

Posted in Machine Learning. Tagged with , .