Feature Importance & Random Forest – Python

Random forest for feature importance

In this post, you will learn about how to use Random Forest Classifier (RandomForestClassifier) for determining feature importance using Sklearn Python code example. This will be useful in feature selection by finding most important features when solving classification machine learning problem. It is very important to understand feature importance and feature selection techniques for data scientists to use most appropriate features for training machine learning models. Recall that other feature selection techniques includes L-norm regularization techniques, greedy search algorithms techniques such as sequential backward / sequential forward selection etc.  What & Why of Feature Importance? Feature importance is a key concept in machine learning that refers to the relative importance of each feature …

Continue reading

Posted in Data Science, Machine Learning, Python. Tagged with , , .

What is Machine Learning? Concepts & Examples

what is machine learning

Machine learning is a machine’s ability to learn from data. It has been around for decades, but machine learning is now being applied in nearly every industry and job function. In this blog post, we’ll cover a detailed introduction to what is machine learning (ML) including different definitions. We will also learn about different types of machine learning tasks, algorithms, etc along with real-world examples. What is machine learning & how does it work? Simply speaking, machine learning can be used to model our beliefs about real-world events. For example, let’s say a person came to a doctor with a certain blood report. A doctor based on his belief system …

Continue reading

Posted in Data Science, Deep Learning, Machine Learning. Tagged with , , .

Sklearn SimpleImputer Example – Impute Missing Data

In this post, you will learn about how to use Python’s Sklearn SimpleImputer for imputing / replacing numerical & categorical missing data using different strategies. In one of the related article posted sometime back, the usage of fillna method of Pandas DataFrame is discussed. Handling missing values is key part of data preprocessing and hence, it is of utmost importance for data scientists / machine learning Engineers to learn different techniques in relation imputing / replacing numerical or categorical missing values with appropriate value based on appropriate strategies. SimpleImputer Python Code Example SimpleImputer is a class in the sklearn.impute module that can be used to replace missing values in a dataset, using a …

Continue reading

Posted in Data Science, Machine Learning, Python. Tagged with , , , .

Pandas dropna: Drop Rows & Columns with Missing Values

pandas dropna method code sample

In this blog post, we will be discussing Pandas’ dropna method. This method is used for dropping rows and columns that have missing values. Pandas is a powerful data analysis library for Python, and the dropna function is one of its most useful features. As data scientists, it is important to be able to handle missing data, and Pandas’ dropna function makes this easy. Pandas dropna Method Pandas’ dropna function allows us to drop rows or columns with missing values in our dataframe. Find the documentation of Pandas dropna method on this page: pandas.DataFrame.dropna. The dropna method looks like the following: DataFrame.dropna(axis=0, how=’any’, thresh=None, subset=None, inplace=False) Given the above method and parameters, the following …

Continue reading

Posted in Data Science, Machine Learning, Python. Tagged with , , .

K-Nearest Neighbors (KNN) Python Examples

If you’re working with data analytics projects including building machine learning (ML) models, you’ve probably heard of the K-nearest neighbors (KNN) algorithm. But what is it, exactly? And more importantly, how can you use it in your own AI / ML projects? In this post, we’ll take a closer look at the KNN algorithm and walk through a simple Python example. You will learn about the K-nearest neighbors algorithm with Python Sklearn examples. K-nearest neighbors algorithm is used for solving both classification and regression machine learning problems. Stay tuned!  Introduction to K-Nearest Neighbors (K-NN) Algorithm K-nearest neighbors is a supervised machine learning algorithm for classification and regression. In both cases, the input consists …

Continue reading

Posted in Data Science, Machine Learning, Python. Tagged with , , , .

Accuracy, Precision, Recall & F1-Score – Python Examples

Classification models are used in classification problems to predict the target class of the data sample. The classification model predicts the probability that each instance belongs to one class or another. It is important to evaluate the performance of the classifications model in order to reliably use these models in production for solving real-world problems. Performance measures in machine learning classification models are used to assess how well machine learning classification models perform in a given context. These performance metrics include accuracy, precision, recall, and F1-score. Because it helps us understand the strengths and limitations of these models when making predictions in new situations, model performance is essential for machine …

Continue reading

Posted in Data Science, Machine Learning, Python. Tagged with , , , .

Support Vector Machine (SVM) Python Example

Support vector machine maximize the margin 2

In this post, you will learn about the concepts of Support Vector Machine (SVM)  with the help of  Python code example for building a machine learning classification model. We will work with Python Sklearn package for building the model. As data scientists, it is important to get a good grasp on SVM algorithm and related aspects. What is Support Vector Machine (SVM)? Support vector machine (SVM) is a supervised machine learning algorithm that can be used for both classification and regression tasks. At times, SVM for classification is termed as support vector classification (SVC) and SVM for regression is termed as support vector regression (SVR). In this post, we will learn about SVM …

Continue reading

Posted in AI, Data Science, Machine Learning, Python. Tagged with , , .

Overfitting & Underfitting in Machine Learning

Overfitting and underfitting represented using Model error vs complexity plot

The performance of the machine learning models depends upon two key concepts called underfitting and overfitting. In this post, you will learn about some of the key concepts of overfitting and underfitting in relation to machine learning models. In addition, you will also get a chance to test your understanding by attempting the quiz. The quiz will help you prepare well for interview questions in relation to underfitting & overfitting. As data scientists, you must get a good understanding of the overfitting and underfitting concepts.  Introduction to Overfitting & Underfitting Assuming an independent and identically distributed (I.I.d) dataset, when the prediction error on both the training and validation dataset is …

Continue reading

Posted in Data Science, Interview questions, Machine Learning. Tagged with , , .

Spend Analytics Use Cases: AI & Data Science

What is spend analytics

In this post, you will learn about the high-level concepts of spend analytics in relation to procurement and how data science / machine learning & AI can be used to extract actionable insights as part of spend analytics. This will be useful for procurement professionals such as category managers, sourcing managers, and procurement analytics stakeholders looking to understand the concepts of spend analytics and how they can drive decisions based on spend analytics. What is Spend Analytics? Simply speaking, spend analytics is about performing systematic computational analysis to extract actionable insights from spend and savings data across different categories of spends in order to achieve desired business outcomes such as cost savings, …

Continue reading

Posted in Data Science, Machine Learning, Procurement. Tagged with , .

Logistic Regression Explained with Python Example

logistic regression model 3

In this blog post, we will discuss the logistic regression machine learning algorithm with a python example. Logistic regression is a type of regression algorithm that is used to predict the probability of occurrence of an event. It is often used in machine learning applications. In this tutorial, we will use python to implement logistic regression for binary classification problems.  What is Logistic Regression? Logistic regression is a machine learning algorithm used for classification problems. That is, it can be used to predict whether an instance belongs to one class or the other. For example, it could be used to predict whether a person is male or female, based on …

Continue reading

Posted in Data Science, Machine Learning, Python. Tagged with , , .

Perceptron Explained using Python Example

In this post, you will learn about the concepts of Perceptron with the help of Python example. It is very important for data scientists to understand the concepts related to Perceptron as a good understanding lays the foundation of learning advanced concepts of neural networks including deep neural networks (deep learning).  What is Perceptron? Perceptron is a machine learning algorithm which mimics how a neuron in the brain works. It is also called as single layer neural network consisting of a single neuron. The output of this neural network is decided based on the outcome of just one activation function associated with the single neuron. In perceptron, the forward propagation of information happens. Deep …

Continue reading

Posted in Data Science, Deep Learning, Machine Learning, Python. Tagged with , , , .

Classification Problems Real-life Examples

classification problems real life examples

In this post, you will learn about some popular and most common real-life examples of machine learning classification problems. For beginner data scientists, these examples will prove to be helpful to gain perspectives on real-world problems which can be termed as machine learning classification problems. This post will be updated from time-to-time to include interesting real-life examples which can be solved by training machine learning classification models. Before going ahead and looking into examples, let’s understand a little about what is machine learning (ML) classification problem. You may as well skip this section if you are familiar with the definition of machine learning classification problems & solutions.  You may want …

Continue reading

Posted in Data Science, Machine Learning. Tagged with , .

AI Product Manager Interview Questions

interview questions for machine learning

AI has become such an integral part of our lives that it is important to hire professionals who can help create AI / machine learning products that will be used by many people. These AI product manager interview questions will give you insight into your candidate’s experience, skills, and industry knowledge so that you can get prepared in a better manner before appearing for your next interview as an AI product manager. Check out a detailed interview questions and answers with greater focus on machine learning topics. Before getting into the list of interview questions, lets understand what can be the job description of an AI product manager. How to …

Continue reading

Posted in AI, Career Planning, Interview questions, Machine Learning, Product Management. Tagged with , , .

Linear vs Non-linear Data: How to Know

Non-linear data set

In this post, you will learn the techniques in relation to knowing whether the given data set is linear or non-linear. Based on the type of machine learning problems (such as classification or regression) you are trying to solve, you could apply different techniques to determine whether the given data set is linear or non-linear. For a data scientist, it is very important to know whether the data is linear or not as it helps to choose appropriate algorithms to train a high-performance model. You will learn techniques such as the following for determining whether the data is linear or non-linear: Use scatter plot when dealing with classification problems Use …

Continue reading

Posted in AI, Data Science, Machine Learning. Tagged with , .

Python – Creating Scatter Plot with IRIS Dataset

scatter-plot-with-IRIS-dataset-using-Python

In this blog post, we will be learning how to create a Scatter Plot with the IRIS dataset using Python. The IRIS dataset is a collection of data that is used to demonstrate the properties of various statistical models. It contains information about 50 observations on four different variables: Petal Length, Petal Width, Sepal Length, and Sepal Width. As data scientists, it is important for us to be able to visualize the data that we are working with. Scatter plots are a great way to do this because they show the relationship between two variables. In this post, we have plotted and explored how how Petal Length and Sepal Length …

Continue reading

Posted in Data Science, Python. Tagged with , , .

Neural Network Explained with Perceptron Example

Single layer neural network

Neural networks are an important part of machine learning, so it is essential to understand how they work. A neural network is a computer system that has been modeled based on a biological neural network comprising neurons connected with each other. It can be built to solve machine learning tasks, like classification and regression problems. The perceptron algorithm is a representation of how neural networks work. The artificial neurons were first proposed by Frank Rosenblatt in 1957 as models for the human brain’s perception mechanism. This post will explain the basics of neural networks with a perceptron example. You will understand how a neural network is built using perceptrons. This …

Continue reading

Posted in Data Science, Deep Learning, Machine Learning. Tagged with , .