# Category Archives: Data Science

## Warehouse Management & Machine Learning Use Cases

Warehouses are a vital part of the supply chain. Not only do they store products, but warehouses also play a role in shipping and receiving goods. As warehouse operations become more complex, it’s important to use technology to help manage them. Warehouses need to be able to efficiently manage the flow of goods in and out while still making room for new deliveries. Increasingly warehouses are turning to machine learning algorithms as a way to improve warehouse efficiency, reduce costs, and increase warehouse productivity. In this blog post, we will explore different machine learning use cases which can be deployed by warehouse managers to create a positive business impact. Machine …

## Normal Distributions Questions and Answers for Interviews

In order to be successful in normal distribution interviews, you need a solid understanding of the normal distribution. This blog post will focus on normal distribution questions and answers that are commonly asked in the data science and statistics interviews. Before jumping into questions and answers, lets quickly understand what normal distribution is. What is normal distribution? A normal distribution is a symmetric, bell-shaped curve that describes the distribution of many types of data. The normal distribution has two parameters, mean and standard deviation. It is important to know these two parameters because they are used to calculate probabilities associated with the normal distribution. The normal curve describes how data …

## Level of Significance & Hypothesis Testing

In hypothesis testing, the level of significance is a measure of how confident you can be about rejecting the null hypothesis. This blog post will explore what hypothesis testing is and why understanding significance levels are important for your data science projects. In addition, you will also get to test your knowledge of level of significance towards the end of the blog with the help of quiz. These questions can help you test your understanding and prepare for data science / statistics interviews. Before we look into what level of significance is, let’s quickly understand what is hypothesis testing. What is Hypothesis testing and how is it related to significance …

## P-Value & Hypothesis Testing: Examples

Many describe p-value as the probability that the null hypothesis holds good. That is an incorrect definition. The concept of p-value is understood differently by different people and is considered as one of the most used & abused concepts in statistics, mostly in relation to hypothesis testing. In this blog post, you will learn the P-VALUE concepts with multiple different examples. It is extremely important to get a good understanding of P-value if you are starting to learn data science/machine learning as the concepts of P-value are key to hypothesis testing. Before getting into the description of p-value, let’s quickly go through the hypothesis testing concepts to get a good …

## Type I & Type II Errors in Hypothesis Testing: Examples

This article describes Type I and Type II errors made due to incorrect evaluation of the outcome of hypothesis testing, based on a couple of examples such as the person comitting a crime, the house on fire, and Covid-19. You may want to note that it is key to understand type I and type II errors as these concepts will show up when we are evaluating a hypothesis such as those related to machine learning algorithms (linear regression, logistic regression, etc). For example, in the case of linear regression models, the significance value is compared with the p-value and, the null hypothesis that the parameter/coefficient is equal to zero is …

## Python – Matplotlib Pyplot Plot Example

Matplotlib is a matlab-like plotting library for python. It can create both 2D and 3D plots, with the help of matplotlib pyplot. Matplotlib can be used in interactive environments such as IPython notebook, Matlab, octave, qt-console and wxpython terminal. Matplotlib has a modular architecture with each layer having its own dependencies which makes matplotlib very versatile and allows users to use only those modules they need for their applications. matplotlib provides many hooks that allow developers to customize matplotlib features as they need. Matplotlib architecture has a clear separation between user interface and drawing code which makes it easy to customize or create new interfaces for matplotlib. In this blog …

## Procurement: Key Advanced Analytics Use Cases

The procurement analytics applications are poised to grow exponentially in the next few years. With so much data available and the need for digital transformation across procurement organization, it’s important to know how procurement analytics can help you make better business decisions. This blog will cover procurement analytics and key use cases of advanced analytics that will be useful for business stakeholders such as category managers, sourcing managers, supplier relationship managers, business analysts / product managers, and data scientists implement different use cases using machine learning. Procurement analytics will allow you to use data very effectively in achieving data-driven decision making. One can get started with procurement analytics with focus …

## What are Sequence Models: Types & Examples

Sequence models are a very common sequence modeling technique in machine learning that is used for analyzing sequence data. This blog post will discuss types of sequence models, their examples, and how they can be used to help with the understanding and analysis of sequences. What is sequence data? Sequence data are the data points which are ordered in the meaningful manner such that earlier data points or observations provide the information about later data points or observations. The time series data is an example of sequence data which can be defined as a sequence of observations where each observation is dependent on the previous one. Sequence data can be …

## K-Fold Cross Validation – Python Example

In this post, you will learn about K-fold Cross Validation concepts with Python code example. K-fold cross validation is a data splitting technique that can be implemented with k > 1 folds. K-Fold Cross Validation is also known as k-cross, k-fold cross validation, k-fold CV and k-folds. The k-fold cross validation technique can be implemented easily using Python with scikit learn package which provides an easy way to calculate k-fold cross validation models. It is important to learn the concepts cross validation concepts in order to perform model tuning with an end goal to choose model which has the high generalization performance. As a data scientist / machine learning Engineer, you must …

## Survival Analysis Modeling for Customer Churn

Customer churn is a prevalent problem for many businesses. It can happen in several different ways, such as when customers stop using the product, or when they leave because of an issue with customer service. This blog post will explore survival analysis modeling and what it can do to help you better understand customer churn problems. First, we will discuss survival analysis itself and why it is beneficial for analyzing customer behavior. Then we will show some examples on how survival analysis has been used to analyze customer churn problems. As data scientists, it will be good to familiarize ourselves with survival analysis, as it is a popular modeling technique …

## Elbow Method vs Silhouette Score – Which is Better?

In K-means clustering, elbow method and silhouette analysis or score techniques are used to find the number of clusters in a dataset. The elbow method is used to find the “elbow” point, where adding additional data samples does not change cluster membership much. Silhouette score determines whether there are large gaps between each sample and all other samples within the same cluster or across different clusters. In this post, you will learn about these two different methods to use for finding optimal number of clusters in K-means clustering. Selecting optimal number of clusters is key to applying clustering algorithm to the dataset. As a data scientist, knowing these two techniques to find …

## Hello World – Altair Python Install in Jupyter Notebook

This blog post will walk you through the steps needed to install Altair graphical libraries in Jupyter Notebook. For data scientists, Altair visualization library can prove to very useful. In this blog, we’ll look at how to download and install Altair, as well as some examples of using Altair capabilities for data visualization. What is Altair? Altair is a free statistical visualization library that can be used with python (2 or 3). It provides high-quality interactive graphics via an integrated plotting function ́plot() that produces publication-quality figures in a variety of hardcopy formats and interactive environments across platforms. Altair is also easy to learn, with intuitive commands like ‘plot’, ‘hist’ …

## Different types of Machine Learning: Models / Algorithms

Machine learning is a type of machine intelligence that enables computers to learn and improve without being explicitly programmed. It’s based on the idea that we can build systems which allow our data to do the talking, by finding patterns in vast quantities of information. These machine learning algorithms require different types of machine-learning models trained using different algorithms, depending on what problem they are trying to solve or how accurate an answer needs to be. In this blog post, we will discuss the following four different types of machine learning models / algorithms: Supervised learning Unsupervised learning Semi-supervised learning Reinforcement learning What is supervised learning? Supervised learning is defined …

## Free AI / Machine Learning Courses at Alison.com

Are you interested in learning about AI / machine learning / data sicence and looking for free online courses? As per MANUELA M. VELOSO, Herbert A. Simon University Professor at CMU,Machine Learning (ML) is a fascinating field of Artificial Intelligence (AI) research and practice where we investigate how computer agents can improve their perception, cognition, and action with experience. Machine Learning is about machines improving from data, knowledge, experience, and interaction. Machine Learning utilizes a variety of techniques to intelligently handle large and complex amounts of information build upon foundations in many disciplines, including statistics, knowledge representation, planning and control, databases, causal inference, computer systems, machine vision, and natural language …

## Difference between Supervised & Unsupervised Learning

Supervised and unsupervised learning are two different common types of machine learning tasks that are used to solve many different types of business problems. Supervised learning uses training data with labels to create supervised models, which can be used to predict outcomes for future datasets. Unsupervised learning is a type of machine learning task where the training data is not labeled or categorized in any way. For beginner data scientists, it is very important to get a good understanding of the difference between supervised and unsupervised learning. In this post, we will discuss how supervised and unsupervised algorithms work and what is difference between them. You may want to check …

## NIT Warangal offers one-week online training on AI, Machine Learning

Are you interested in learning about AI and Machine Learning, or refresing your concepts? NIT Warangal offers one-week online paid training (minimal fees) on AI, Machine Learning. This program is a great opportunity for students to learn about AI & machine learning basics and advanced concepts. It is organized by the Department of Electronics and Communication Engineering & Department of R&D in association with Center of Continuing Education. It will be taught by experience professors who have years of experience in their respective fields. The course will take place between 30th November to 4th December 2021, and it is open to all Faculty/ Research Scholars/Industry professionals/ and other eligible students …