Tag Archives: Data Science

One Sample T-test: Formula & Examples

one sample t-test formula and examples

In statistics, the t-test is often used in research when the researcher wants to know if there is a significant difference between the mean of sample and the population, or whether there is a significant difference between the means of two different groups. There are two types of t-tests: the one sample t-test and the two samples t-test. As data scientists, it is important for us to understand the concepts of t-test and how to use it in our data analysis. In this blog post, we will focus on the one sample t-test and explain with formula and examples. What is one-sample T-test? One-sample T-test is a statistical hypothesis testing …

Continue reading

Posted in Data Science, statistics. Tagged with , .

Z-test MCQs with Answers: Interview Questions

Z-test MCQs with questions and answers

In this blog post, you can test your knowledge about Z-test, Z-statistics and related concepts through multiple choice questions (MCQs) and answers. Getting a good understanding of Z-tests, Z-statistics and Z-distribution is of utmost importance for data scientists at large. The following are key concepts around which the MCQs are posted: Z-score or Z-statistics concepts Estimation of population mean and proportion 1-sample Z-test for mean and proportion 2-samples Z-test for mean and proportion Z-test Interview Questions Samples The following is a list of interview questions that you would want to learn: What is Z-score? Explain with an example and formula. What are different types of Z-tests? Explain with formula and …

Continue reading

Posted in Career Planning, Data Science, Interview questions, statistics. Tagged with , , .

Z-score or Z-statistics: Concepts, Formula & Examples

z-scores formula concepts and examples

Z-scores or Z-statistics represent a statistical technique of measuring the deviation of data from the mean. There are different formula used for Z-score or Z-statistics depending upon what is measured. Z-statistics is generally used with Z-test which is a hypothesis testing statistical technique. As a data scientist, it is of utmost importance to be well-versed with the z-score formula and its various applications. Having great clarity on the concept of Z-score and/or Z-statistics will help you use the correct formula for calculation in the appropriate cases. In this blog post, we will discuss the concept of Z-score, concepts, formula, and examples. Z-score / Z-statistics Concepts & Formula The Z-score formula …

Continue reading

Posted in Data Science, statistics. Tagged with , .

Two samples Z-test for Means: Formula & Examples

two sample z-test for means formula and examples

In statistics, a two-sample z-test for means is used to determine if the means of two populations are equal. This test is used when the population standard deviations are known. As data scientists, it is of utmost importance to be able to understand and conduct this test accurately. This blog post will provide a detailed explanation of the two-sample z-test for means, as well as examples to help illustrate how it is used. What is a two-sample Z-test for means? Two-sample Z-test for means is a statistical hypothesis testing technique that is used to determine if the difference between the two population means is not statistically significant. This test is …

Continue reading

Posted in Data Science, statistics. Tagged with , .

Z-Score Explained with Ronaldo / Robert Example

In this post, you will learn the concepts of Z-Score with the help from examples including Christiano Ronaldo and Robert Lewandowski. You will learn about how to compare and call out whose performance was better in Champions League 2019-2020. As a data scientist, it will be extremely important to learn the concepts of Z-Scores, also called as Standard scores, as it would help you evaluate / compare a particular data set with past data set. Before getting into the example of Z-scores, lets understand some concepts of Z-scores. What’s Z-Score or Z-statistics? Z-score can be defined as number of standard deviations the data point is above or below the mean …

Continue reading

Posted in statistics. Tagged with , .

Reinforcement Learning Real-world examples

Reinforcement-learning-real-world-example

 In this blog post, we’ll learn about some real-world / real-life examples of Reinforcement learning, one of the different approaches to machine learning where other approaches are supervised and unsupervised learning. Reinforcement learning is a type of machine learning that enables a computer system to learn how to make choices by being rewarded for its successes. This can be an extremely powerful tool for optimization and decision-making. It’s one of the most popular machine learning methods used today. Before looking into the real-world examples of Reinforcement learning, let’s quickly understand what is reinforcement learning. Introduction to Reinforcement Learning (RL) Reinforcement learning is an approach to machine learning in which the agents …

Continue reading

Posted in Data Science, Machine Learning. Tagged with , .

Different Success / Evaluation Metrics for AI / ML Products

Success metrics for AI and ML products

In this post, you will learn about some of the common success metrics that can be used for measuring the success of AI / ML (machine learning) / DS (data science) initiatives / projects / products. If you are one of the AI / ML stakeholders including product managers, you would want to get hold of these metrics in order to apply right metrics in right business use cases. Business leaders do want to know and maximise the return on investments (ROI) from AI / ML investments.  Here is the list of success metrics for AI / DS / ML initiatives: Business value metrics / key performance indicators (KPIs): Business …

Continue reading

Posted in AI, Data Science, Machine Learning. Tagged with , , .

Degree of Freedom in Statistics: Meaning & Examples

degrees of freedom in statistics - meaning and examples

The degree of freedom (DOF) is a term that statisticians use to describe the degree of independence in statistical data. A degree of freedom can be thought of as the number of variables that are free to vary. When you have one degree, there is one variable that can be freely changed without affecting the value for any other variable. As a data scientist, it is important to understand the concept of degree of freedom, as it can help you better understand your data and how to analyze it. In this blog post, we’ll explore the degree of freedom concept in statistics and provide some examples. What is degree of …

Continue reading

Posted in Data Science, statistics. Tagged with , .

Null and Alternate hypothesis: Definition & Example

null and alternate hypothesis

Hypothesis testing is a technique used to determine whether an assumption about the population is true. Null hypothesis and alternate hypothesis are two types of hypotheses that you may hear when conducting this type of test. Having a good understanding about null and alternate hypothesis will help you better design good hypothesis tests and understand their results in a nice manner. It is very important for data scientists to be able to distinguish between null and alternate hypothesis and design hypothesis tests. In this blog post, we will understand the definition and examples of the null and alternate hypothesis. What are different scenarios for hypothesis testing? The following are two …

Continue reading

Posted in Data Science. Tagged with .

Normal Distributions Questions and Answers for Interviews

normal distribution with different means and standard deviations

In order to be successful in normal distribution interviews, you need a solid understanding of the normal distribution. This blog post will focus on normal distribution questions and answers that are commonly asked in the data science and statistics interviews. Before jumping into questions and answers, lets quickly understand what normal distribution is. What is normal distribution?  A normal distribution is a symmetric, bell-shaped curve that describes the distribution of many types of data. The normal distribution has two parameters, mean and standard deviation. It is important to know these two parameters because they are used to calculate probabilities associated with the normal distribution. The normal curve describes how data …

Continue reading

Posted in Career Planning, Data Science, Interview questions, statistics. Tagged with , .

Level of Significance & Hypothesis Testing

level of significance and hypothesis testing

In hypothesis testing, the level of significance is a measure of how confident you can be about rejecting the null hypothesis. This blog post will explore what hypothesis testing is and why understanding significance levels are important for your data science projects. In addition, you will also get to test your knowledge of level of significance towards the end of the blog with the help of quiz. These questions can help you test your understanding and prepare for data science / statistics interviews. Before we look into what level of significance is, let’s quickly understand what is hypothesis testing. What is Hypothesis testing and how is it related to significance …

Continue reading

Posted in Data Science, statistics. Tagged with , .

P-Value & Hypothesis Testing: Examples

P-value explained with examples

Many describe p-value as the probability that the null hypothesis holds good. That is an incorrect definition. The concept of p-value is understood differently by different people and is considered as one of the most used & abused concepts in statistics, mostly in relation to hypothesis testing. In this blog post, you will learn the P-VALUE concepts with multiple different examples. It is extremely important to get a good understanding of P-value if you are starting to learn data science/machine learning as the concepts of P-value are key to hypothesis testing. Before getting into the description of p-value, let’s quickly go through the hypothesis testing concepts to get a good …

Continue reading

Posted in Data Science, statistics. Tagged with , .

Type I & Type II Errors in Hypothesis Testing: Examples

This article describes Type I and Type II errors made due to incorrect evaluation of the outcome of hypothesis testing, based on a couple of examples such as the person comitting a crime, the house on fire, and Covid-19. You may want to note that it is key to understand type I and type II errors as these concepts will show up when we are evaluating a hypothesis such as those related to machine learning algorithms (linear regression, logistic regression, etc). For example, in the case of linear regression models, the significance value is compared with the p-value and, the null hypothesis that the parameter/coefficient is equal to zero is …

Continue reading

Posted in Data Science, statistics. Tagged with , , .

Python – Matplotlib Pyplot Plot Example

matplotlib pyplot plot example artistic layer

Matplotlib is a matlab-like plotting library for python. It can create both 2D and 3D plots, with the help of matplotlib pyplot. Matplotlib can be used in interactive environments such as IPython notebook, Matlab, octave, qt-console and wxpython terminal. Matplotlib has a modular architecture with each layer having its own dependencies which makes matplotlib very versatile and allows users to use only those modules they need for their applications. matplotlib provides many hooks that allow developers to customize matplotlib features as they need. Matplotlib architecture has a clear separation between user interface and drawing code which makes it easy to customize or create new interfaces for matplotlib. In this blog …

Continue reading

Posted in Data Science, Python. Tagged with , .

Procurement: Key Advanced Analytics Use Cases

procurement analytics use cases

The procurement analytics applications are poised to grow exponentially in the next few years. With so much data available and the need for digital transformation across procurement organization, it’s important to know how procurement analytics can help you make better business decisions. This blog will cover procurement analytics and key use cases of advanced analytics that will be useful for business stakeholders such as category managers, sourcing managers, supplier relationship managers, business analysts / product managers, and data scientists implement different use cases using machine learning. Procurement analytics will allow you to use data very effectively in achieving data-driven decision making.  One can get started with procurement analytics with focus …

Continue reading

Posted in Data Science, Machine Learning, Procurement. Tagged with , , .

What are Sequence Models: Types & Examples

sequence-to-sequence model

Sequence models are a very common sequence modeling technique in machine learning that is used for analyzing sequence data. This blog post will discuss types of sequence models, their examples, and how they can be used to help with the understanding and analysis of sequences. What is sequence data? Sequence data are the data points which are ordered in the meaningful manner such that earlier data points or observations provide the information about later data points or observations. The time series data is an example of sequence data which can be defined as a sequence of observations where each observation is dependent on the previous one. Sequence data can be …

Continue reading

Posted in Data Science, Machine Learning. Tagged with , .