# Category Archives: Machine Learning

## Correlation Concepts, Matrix & Heatmap using Seaborn

In this blog post, we’ll be discussing correlation concepts, matrix & heatmap using Seaborn. For those of you who aren’t familiar with Seaborn, it’s a library for data visualization in Python. So if you’re looking to up your data visualization game, stay tuned! We’ll start with the basics of correlation and move on to discuss how to create matrices and heatmaps with Seaborn. Let’s get started! Introduction to Correlation Correlation is a statistical measure that expresses the strength of the relationship between two variables. The two main types of correlation are positive and negative. Positive correlation occurs when two variables move in the same direction; as one increases, so do …

## Gaussian Mixture Models: What are they & when to use?

Gaussian mixture models (GMMs) are a type of machine learning algorithm. They are used to classify data into different categories based on the probability distribution. Gaussian mixture models can be used in many different areas, including finance, marketing and so much more! In this blog, an introduction to gaussian mixture models is provided along with real-world examples, what they do and when GMMs should be used. What are Gaussian mixture models (GMM)? Gaussian mixture models (GMM) are a probabilistic concept used to model real-world data sets. GMMs are a generalization of Gaussian distributions and can be used to represent any data set that can be clustered into multiple Gaussian distributions. …

## Different types of Probability Distributions: Examples

In this post, you will learn the definition of 25 different types of probability distributions. Before we get into understanding different types of probability distributions, let’s understand some fundamentals. If you are a data scientist, you would like to go through these distributions. This page could also be seen as a cheatsheet for probability distributions. What are Probability Distributions? Probability distributions are a way of describing how likely it is for a random variable to take on a given value. In other words, they provide a way of quantifying the chances of something happening. Probability distributions are often graphed as histograms, with the possibilities on the x-axis and the probabilities …

## Different Types of CNN Architectures Explained: Examples

The CNN architectures are the most popular deep learning framework. CNNs are used for a variety of applications, ranging from computer vision to natural language processing. In this blog post, we will discuss each type of CNN architecture in detail and provide examples of how these models work. Even before we get to learn about the different types of CNN architecture, let’s briefly recall what is CNN in the first place? What is CNN? CNNs are a type of deep learning algorithm that are used to process data with a grid-like topology. CNNs are a type of deep learning algorithm that is used to process data that has a spatial …

## When to Use Which Clustering Algorithms?

There are many clustering machine learning algorithms to choose from when you want to cluster data. But which one should you use in a particular situation? In this blog post, we will explore the different clustering algorithms and explain when each one is most appropriate. We will also provide examples so that you can see how these algorithms work in practice. What clustering is and why it’s useful Simply speaking, clustering is a technique used in machine learning to group data points together. The goal of clustering is to find natural groups, or clusters, in the data. Clustering algorithms are used to automatically find these groups. Clustering is useful because …

## Key Challenges for Data Science / AI Projects Implementation

In this post, you will learn about some of the key challenges in relation to achieving successful AI / machine learning (ML) or Data science projects implementation in a consistent and sustained manner. As AI / ML project stakeholders including senior management stakeholders, data science architects, product managers, etc, you must get a good understanding of what would it take to successfully execute AI / ML projects and create value for the customers and the business. Whether you are building AI / ML products or enabling unique models for your clients in SaaS setup, you will come across most of these challenges. Understanding the problem Many times, the nature of …

## Accuracy, Precision, Recall & F1-Score – Python Examples

Classification models are used in classification problems to predict the target class of the data sample. The classification model predicts the probability that each instance belongs to one class or another. It is important to evaluate the performance of the classifications model in order to reliably use these models in production for solving real-world problems. Performance measures in machine learning classification models are used to assess how well machine learning classification models perform in a given context. These performance metrics include accuracy, precision, recall, and F1-score. Because it helps us understand the strengths and limitations of these models when making predictions in new situations, model performance is essential for machine …

## Difference between Online & Batch Learning

In this post, you will learn about the concepts and differences between online and batch or offline learning in relation to how machine learning models in production learn incrementally from the stream of incoming data or otherwise. It is one of the most important aspects of designing machine learning systems. Data science architects would require to get a good understanding of when to go for online learning and when to go for batch or offline learning. Why online learning vs batch or offline learning? Before we get into learning the concepts of batch and on-line or online learning, let’s understand why we need different types of models training or learning …

## What is Data-Driven Decision-Making? Why & How?

Data-driven decision-making is a data-driven approach to making decisions including business decisions. This data can come from data analysis, data visualization, or other data resources. Data-driven decision-makers use data in their decision process and they make decisions based on the actionable insights generated from the data. The goal is to make informed decisions while ensuring transparency across the stakeholders. In this blog post, we will discuss what data-driven decision-making is, how it differs from other types of decision-making, and why you should consider going for this method in your business! Before we dive in and understand what is data-driven decision-making, lets understand what are first principles of decision-making? What are …

## Steps for Evaluating & Validating Time-Series Models

Time-series machine learning models are becoming increasingly popular due to the large volume of data that is now available. These models can be used to make predictions about future events, and they are often more accurate than traditional methods. However, it is important to properly evaluate (check accuracy by performing error analysis) and validate these models before you put them into production. In this blog post, we will discuss the different ways that you can evaluate and validate time series machine learning models. We will also provide some tips on how to improve your results. As data scientists, it is important to learn the techniques related to evaluating time-series models. …

## Logit vs Probit Models: Differences, Examples

Logit and probit models are statistical models that are used to model binary or dichotomous dependent variables. This means that the outcome of interest can only take on two possible values. In most cases, these models are used to predict whether or not something will happen. For example, a business might want to know if a particular advertising campaign will lead to an increase in sales. In this blog post, we will explain what logit and probit models are, and we will provide examples of how they can be used. As data scientists, it is important to understand the concepts of logit and probit models and when should they be …

## Linear vs Logistic Regression: Differences, Examples

Linear regression and logistic regression are both methods for modeling relationships between variables. They are both used to build statistical models but perform different tasks. Linear regression is used to model linear relationships, while logistic regression is used to model binary outcomes (i.e. whether or not an event happened). In this blog post, we will discuss the differences between linear and logistic regression, as well as when to use each one. We will also provide examples so that you can understand how they work. What is linear regression? Linear regression is used to solve the regression problems. It is used to model linear relationships. This means that it can be …

## Random Forest Classifier Python Example

Random forest classifiers are popular machine learning algorithms that are used for classification. In this post, you will learn about the concepts of random forest classifiers and how to train a Random Forest Classifier using the Python Sklearn library. This code will be helpful if you are a beginner data scientist or just want to quickly get a code sample to get started with training a machine learning model using the Random Forest algorithm. The following topics will be covered: What is a random forest classifier & how do they work? Random forests are a type of machine learning algorithm that is used for classification and regression tasks. A classifier …

## Machine Learning in Finance: Concepts & Examples

Machine learning has found its way into finance and is being used in various ways to improve the industry. Finance has always been a data-driven industry, and in recent years, machine learning has become an increasingly important tool for making sense of that data. In this blog post, we will explore some of these use cases and explain how machine learning is helping to make finance more efficient. We will also provide examples to help illustrate how machine learning is being used in finance. By the end of this post, you will have a better understanding of the many ways machine learning is benefiting finance and why it is such …

## Machine Learning with Alteryx: Examples

Alteryx is a self-service data analytics software platform that enables users to easily prep, blend, and analyze data all in one place. It is a powerful tool that can be used in a variety of machine learning scenarios. It can be used to clean and prepare data, and develop, evaluate and deploy machine learning (ML) models. It offers a variety of features and tools that can be used to preprocess data, choose algorithms, train models, and evaluate results. In this blog post, we will discuss some of the ways that Alteryx can be used in machine learning. We will also provide examples of how to use Alteryx in machine learning scenarios. …

## Logistic Regression Explained with Python Example

In this blog post, we will discuss the logistic regression machine learning algorithm with a python example. Logistic regression is a type of regression algorithm that is used to predict the probability of occurrence of an event. It is often used in machine learning applications. In this tutorial, we will use python to implement logistic regression for binary classification problems. What is Logistic Regression? Logistic regression is a machine learning algorithm used for classification problems. It is a supervised learning algorithm that can be used to predict the probability of occurrence of an event. The logistic regression algorithm is used to map the input data to a probability, unlike linear …