Quiz #85: MSE vs R-Squared?

Python interview questions and answers

Regression models are an essential tool for data scientists and statisticians to understand the relationship between variables and make predictions about future outcomes. However, evaluating the performance of these models is a crucial step in ensuring their accuracy and reliability. Two commonly used metrics for evaluating regression models are Mean Squared Error (MSE) and R-squared. Understanding when to use each metric and how they differ can greatly improve the quality of your analyses. Check out my related blog on this topic – Mean Squared Error vs R-Squared? Which one to use? To help you test your knowledge on MSE and R-squared (also known as coefficient of determination), we have created …

Continue reading

Posted in Career Planning, Data Science, Interview questions, Machine Learning, statistics. Tagged with , , , .

Machine Learning: Identify New Features for Disease Diagnosis

learning-new-features-from-deep-learning-

When diagnosing diseases that require X-rays and image-based scans, such as cancer, one of the most important steps is analyzing the images to determine the disease stage and to characterize the affected area. This information is central to understanding clinical prognosis and for determining the most appropriate treatment. Developing machine learning (ML) / deep learning (DL) based solutions to assist with the image analysis represents a compelling research area with many potential applications. Traditional modeling techniques have shown that deep learning models can accurately identify and classify diseases in X-rays and image-based scans and can even predict patient prognosis using known features, such as the size or shape of the …

Continue reading

Posted in Deep Learning, Healthcare, Machine Learning. Tagged with , , .

Data Storytelling Explained with Examples

data storytelling key components

Have you ever told a story to someone, but they just didn’t seem to understand it? They might have been confused about the plot or why the characters acted in certain ways. If this has happened to you before, then you are not alone. Many people struggle with storytelling or rather data storytelling because they do not know how to communicate their data effectively to tell an engaging story. Data storytelling is a powerful tool that can be used to educate, inform or persuade an audience by using different kinds of narration. By using charts, graphs, images and other visuals, data can be made more interesting and engaging. Data storytelling …

Continue reading

Posted in Data Science. Tagged with .

Quiz: Linear Regression & F-Statistics

Interview questions

Linear Regression is one of the most widely used statistical methods for predictive modeling in various fields such as finance, marketing, and engineering. It involves fitting a linear equation to a set of data points, which can be used to make predictions about new data. One important aspect of linear regression is the use of F-Statistics, which is a statistical test used to determine the significance of the regression model. If you’re looking to test your knowledge of Linear Regression and F-Statistics, you’ve come to the right place! It will also be helpful if you are preparing for data science interviews. In this capsule quiz, we’ve compiled 10 questions that …

Continue reading

Posted in Career Planning, Data Science, Interview questions, Machine Learning. Tagged with .

Meta AI Announces Advancements in Embodied AI: Artificial Visual Cortex & Adaptive Skill Coordination

embodied ai - artificial visual cortext - adaptive skill coordination

Meta AI has announced two major advancements in general-purpose embodied AI agents, focusing on challenging sensorimotor skills. These advancements include an artificial visual cortex called VC-1 and a new approach called Adaptive Skill Coordination (ASC). Both developments offer valuable benefits to data scientists and researchers in the field of AI. Embodied AI is field of AI focused on agents that can perceive, understand, and interact with their environment through sensorimotor experiences. It aims to create AI systems that can perform tasks in the physical world, bridging the gap between abstract thought and reasoning, and physical actions. VC-1 is a single perception model that supports a diverse range of sensorimotor skills, …

Continue reading

Posted in AI, News, robotics. Tagged with .

Python – Draw Confusion Matrix using Matplotlib

Classification models are a fundamental part of machine learning and are used extensively in various industries. Evaluating the performance of these models is critical in determining their effectiveness and identifying areas for improvement. One of the most common tools used for evaluating classification models is the confusion matrix. It provides a visual representation of the model’s performance by displaying the number of true positives, false positives, true negatives, and false negatives. In this post, we will explore how to create and visualize confusion matrices in Python using Matplotlib. We will walk through the process step-by-step and provide examples that demonstrate the use of Matplotlib in creating clear and concise confusion …

Continue reading

Posted in Data Science, Machine Learning, Python. Tagged with , , , .

Degree of Freedom in Statistics: Meaning & Examples

degrees of freedom in statistics - meaning and examples

The degree of freedom (DOF) is a term that statisticians use to describe the degree of independence in statistical data. A degree of freedom can be thought of as the number of variables that are free to vary, given one or more constraints. When you have one degree, there is one variable that can be freely changed without affecting the value for any other variable. As a data scientist, it is important to understand the concept of degree of freedom, as it can help you do accurate statistical analysis and  validate the results. In this blog, we will explore the meaning of degree of freedom in statistics, its importance in …

Continue reading

Posted in Data Science, statistics. Tagged with , .

Different types of Time-series Forecasting Models

different types of time-series forecasting

Forecasting is the process of predicting future events based on past and present data. Time-series forecasting is a type of forecasting that predicts future events based on time-stamped data points. Time-series forecasting models are an essential tool for any organization or individual who wants to make informed decisions based on future events or trends. From stock market predictions to weather forecasting, time-series models help us to understand and forecast changes over time. However, with so many different types of models available, it can be challenging to determine which one is best suited for a particular scenario. There are many different types of time-series forecasting models, each with its own strengths …

Continue reading

Posted in Data Science, Machine Learning. Tagged with , .

Transposed Convolution vs Convolution Layer: Examples

convolution-layer-example

In the field of computer vision and deep learning, convolutional neural networks (CNNs) are widely used for image recognition tasks. A fundamental building block of CNNs is the convolutional layer, which extracts features from the input image by convolving it with a set of learnable filters. However, another type of layer called transposed convolution, also known as deconvolution, has gained popularity in recent years. In this blog post, we will compare and contrast these two types of layers, provide examples of their usage, and discuss their strengths and weaknesses. What are Convolutional Layer? What’s their purpose? A convolutional layer is a fundamental building block of a convolutional neural network (CNN). …

Continue reading

Posted in Deep Learning, Machine Learning. Tagged with , .

Support Vector Machine (SVM) Python Example

support vector machine - SVM

Support Vector Machines (SVMs) are a powerful and versatile machine learning algorithm that has gained widespread popularity among data scientists in recent years. SVMs are widely used for classification, regression, and outlier detection (one-class SVM), and have proven to be highly effective in solving complex problems in various fields, including computer vision (image classification, object detection, etc.), natural language processing (sentiment analysis, text classification, etc.), and bioinformatics (gene expression analysis, protein classification, disease diagnosis, etc.). In this post, you will learn about the concepts of Support Vector Machine (SVM)  with the help of  Python code example for building a machine learning classification model. We will work with Python Sklearn package for building the …

Continue reading

Posted in AI, Data Science, Machine Learning, Python. Tagged with , , .

Fixed vs Random vs Mixed Effects Models – Examples

fixed and random effects models

Have you ever wondered what fixed effect, random effect and mixed effects models are? Or, more importantly, how they differ from one another?  In this post, you will learn about the concepts of fixed and random effects models along with when to use fixed effects models and when to go for fixed + random effects (mixed) models. The concepts will be explained with examples. As data scientists, you must get a good understanding of these concepts as it would help you build better linear models such as general linear mixed models or generalized linear mixed models (GLMM).  What are fixed, random & mixed effects models? First, we will take a real-world example and try and understand …

Continue reading

Posted in Data Science, statistics. Tagged with .

CNN Basic Architecture for Classification & Segmentation

image classification object detection image segmentation

As data scientists, we are constantly exploring new techniques and algorithms to improve the accuracy and efficiency of our models. When it comes to image-related problems, convolutional neural networks (CNNs) are an essential tool in our arsenal. CNNs have proven to be highly effective for tasks such as image classification and segmentation, and have even been used in cutting-edge applications such as self-driving cars and medical imaging. Convolutional neural networks (CNNs) are deep neural networks that have the capability to classify and segment images. CNNs can be trained using supervised or unsupervised machine learning methods, depending on what you want them to do. CNN architectures for classification and segmentation include …

Continue reading

Posted in Data Science, Deep Learning, Machine Learning. Tagged with , , .

Keras: Multilayer Perceptron (MLP) Example

image-classification-using-MLP-neural-network

Artificial Neural Networks (ANN) have emerged as a powerful tool in machine learning, and Multilayer Perceptron (MLP) is a popular type of ANN that is widely used in various domains such as image recognition, natural language processing, and predictive analytics. Keras is a high-level API that makes it easy to build and train neural networks, including MLPs. In this blog, we will dive into the world of MLPs and explore how to build and train an MLP model using Keras. We will build a simple MLP model using Keras and train it on a dataset. We will explain different aspects of training MLP model using Keras. By the end of …

Continue reading

Posted in Deep Learning, Machine Learning. Tagged with , .

Neural Network & Multi-layer Perceptron Examples

Single layer neural network

Neural networks are an important part of machine learning, so it is essential to understand how they work. A neural network is a computer system that has been modeled based on a biological neural network comprising neurons connected with each other. It can be built to solve machine learning tasks, like classification and regression problems. The perceptron algorithm is a representation of how neural networks work. The artificial neurons were first proposed by Frank Rosenblatt in 1957 as models for the human brain’s perception mechanism. This post will explain the basics of neural networks with a perceptron example. You will understand how a neural network is built using perceptrons. This …

Continue reading

Posted in Data Science, Deep Learning, Machine Learning. Tagged with , .

Positively Skewed Probability Distributions: Examples

positively skewed distribution example

Probability distributions are an essential concept in statistics and data analysis. They describe the likelihood of different outcomes or events occurring and provide valuable insights into the characteristics of a given data set. Skewness is an important aspect of probability distributions that can have a significant impact on data analysis and decision-making. In this blog, we will focus on positively skewed probability distributions and explore some real-life examples where these distributions occur. We will discuss what a positively skewed distribution is, what are its different types with formula and definitions. By the end of this blog, you will have a better understanding of positively skewed distributions and be able to …

Continue reading

Posted in Data Science, statistics. Tagged with , .

Data Analytics Training Program (Beginners)

Data analytics training

Data analytics has become an integral part of businesses today, helping organizations make data-driven decisions that drive success. To become proficient in data analytics and solve complex business problems, it is essential to have a strong foundation in the key concepts and tools of data analytics. My online courses, which cover topics such as data-driven decision making / decision science, business statistics, python programming, machine learning, and business analytics, are designed to help learners of all levels become experts in these areas. Check out this page for detailed information: Become Data Analytics Pro! Each of these courses is designed to help learners acquire the skills and knowledge necessary to succeed …

Continue reading

Posted in Career Planning, Online Courses. Tagged with .