Tag Archives: machine learning
Linear Regression Interview Questions for Data Scientists
This page lists down 40 regression (linear/univariate, multiple/multilinear/multivariate) interview questions (in form of objective questions) which may prove to be helpful for Data Scientists / Machine Learning enthusiasts. Those appearing for interviews for machine learning/data scientist freshers/intern/beginners positions would also find these questions very helpful and handy enough to quickly brush up / check your knowledge and prepare accordingly. Practice Tests on Regression Analysis These interview questions are split into four different practice tests with questions and answers which can be found on following page: Linear, Multiple regression interview questions and answers – Set 1 Linear, Multiple regression interview questions and answers – Set 2 Linear, Multiple regression interview questions …
Different Success / Evaluation Metrics for AI / ML Products
In this post, you will learn about some of the common success metrics that can be used for measuring the success of AI / ML (machine learning) / DS (data science) initiatives / projects / products. If you are one of the AI / ML stakeholders including product managers, you would want to get hold of these metrics in order to apply right metrics in right business use cases. Business leaders do want to know and maximise the return on investments (ROI) from AI / ML investments. Here is the list of success metrics for AI / DS / ML initiatives: Business value metrics / key performance indicators (KPIs): Business …
Warehouse Management & Machine Learning Use Cases
Warehouses are a vital part of the supply chain. Not only do they store products, but warehouses also play a role in shipping and receiving goods. As warehouse operations become more complex, it’s important to use technology to help manage them. Warehouses need to be able to efficiently manage the flow of goods in and out while still making room for new deliveries. Increasingly warehouses are turning to machine learning algorithms as a way to improve warehouse efficiency, reduce costs, and increase warehouse productivity. In this blog post, we will explore different machine learning use cases which can be deployed by warehouse managers to create a positive business impact. Machine …
Type I & Type II Errors in Hypothesis Testing: Examples
This article describes Type I and Type II errors made due to incorrect evaluation of the outcome of hypothesis testing, based on a couple of examples such as the person comitting a crime, the house on fire, and Covid-19. You may want to note that it is key to understand type I and type II errors as these concepts will show up when we are evaluating a hypothesis such as those related to machine learning algorithms (linear regression, logistic regression, etc). For example, in the case of linear regression models, the significance value is compared with the p-value and, the null hypothesis that the parameter/coefficient is equal to zero is …
Cybersecurity Machine Learning Use Cases: Examples
Cybersecurity professionals are increasingly finding cybersecurity machine learning use cases in their work. The reason for this is that cybersecurity has become more complicated and the scale of cybersecurity threats is growing exponentially. Machine learning can help to combat these cybersecurity threats by providing security teams with real-time alerts, but there are many cybersecurity machine learning use cases beyond just cybersecurity. Artificial intelligence (AI) technologies, in particular, machine learning models such as logistic regression, SVM and random forest, etc., and deep neural networks models such as CNN, LSTM, etc., have been widely used to fight against cyberattacks. In this blog post, we will look into how machine learning is being …
Elbow Method vs Silhouette Score – Which is Better?
In K-means clustering, elbow method and silhouette analysis or score techniques are used to find the number of clusters in a dataset. The elbow method is used to find the “elbow” point, where adding additional data samples does not change cluster membership much. Silhouette score determines whether there are large gaps between each sample and all other samples within the same cluster or across different clusters. In this post, you will learn about these two different methods to use for finding optimal number of clusters in K-means clustering. Selecting optimal number of clusters is key to applying clustering algorithm to the dataset. As a data scientist, knowing these two techniques to find …
Different types of Machine Learning: Models / Algorithms
Machine learning is a type of machine intelligence that enables computers to learn and improve without being explicitly programmed. It’s based on the idea that we can build systems which allow our data to do the talking, by finding patterns in vast quantities of information. These machine learning algorithms require different types of machine-learning models trained using different algorithms, depending on what problem they are trying to solve or how accurate an answer needs to be. In this blog post, we will discuss the following four different types of machine learning models / algorithms: Supervised learning Unsupervised learning Semi-supervised learning Reinforcement learning What is supervised learning? Supervised learning is defined …
Free AI / Machine Learning Courses at Alison.com
Are you interested in learning about AI / machine learning / data sicence and looking for free online courses? As per MANUELA M. VELOSO, Herbert A. Simon University Professor at CMU,Machine Learning (ML) is a fascinating field of Artificial Intelligence (AI) research and practice where we investigate how computer agents can improve their perception, cognition, and action with experience. Machine Learning is about machines improving from data, knowledge, experience, and interaction. Machine Learning utilizes a variety of techniques to intelligently handle large and complex amounts of information build upon foundations in many disciplines, including statistics, knowledge representation, planning and control, databases, causal inference, computer systems, machine vision, and natural language …
Google Cloud Automl: Business Application Examples
Google cloud platform (GCP) automl services are a set of google cloud platform products with a focus on machine learning and automation. They help you to automate several tasks related to machine learning. In this blog post, we’ll talk about google cloud automl services and some common business problems that can be solved using these GCP automl services. What are some popular Google Cloud Automl services? Google cloud automl services include some of the following: Google Cloud Vision can be used to perform tasks related to image recognition like face detection, OCR (optical character recognition), landmark detection, etc. Google’s cloud vision can detect emotions, understand text, and more. The service …
NIT Warangal offers one-week online training on AI, Machine Learning
Are you interested in learning about AI and Machine Learning, or refresing your concepts? NIT Warangal offers one-week online paid training (minimal fees) on AI, Machine Learning. This program is a great opportunity for students to learn about AI & machine learning basics and advanced concepts. It is organized by the Department of Electronics and Communication Engineering & Department of R&D in association with Center of Continuing Education. It will be taught by experience professors who have years of experience in their respective fields. The course will take place between 30th November to 4th December 2021, and it is open to all Faculty/ Research Scholars/Industry professionals/ and other eligible students …
ML Engineer vs Data Scientist: Differences & Similarities
In today’s world, ML (machine learning) engineer and Data scientist are two popular job positions. These positions have a lot of overlap but there are also some key differences to be aware of. In this blog post, we will go over the details of ML engineers vs Data scientists so you can decide which one is right for you! What does an ML engineer do? An ML engineer primarily designs and develops machine learning systems. Before getting into the roles & responsibilities of an ML engineer, let’s understand what is a machine learning system. A machine learning system can be defined as a system that comprises of one or more …
Real-World Applications of Convolutional Neural Networks
Convolutional neural networks (CNNs) are a type of deep learning algorithm that has been used in a variety of real-world applications. CNNs can be trained to classify images, detect objects in an image, and even predict the next word in a sentence with incredible accuracy. CNNs can also be applied to more complex tasks such as natural language processing (NLP). CNNs are very good at solving classification problems because they’re able to identify patterns within data sets. This blog post will explore some CNN applications and discuss how CNN models can be used to solve real-world problems. Before getting into the details of CNN applications, let’s quickly understand what are …
Week Nov1, 2021: Top 3 Machine Learning Tutorial Videos
The field of machine learning is a vast topic and it can be hard to know where to start. In this blog post, we’ll cover the top three free tutorial videos on machine learning from YouTube published this week (Week of Nov 1, 2021). These videos will help you get started with the basics of machine learning & deep learning, introduce you to some popular algorithms in use today, and give you an idea of what’s possible when building a model from scratch. Build a Machine Learning Project From Scratch with Python and Scikit-learn Let’s say you want to build a machine learning project from scratch. Maybe you’re not sure …
Support Vector Machine (SVM) Interview Questions
Support Vector Machine (SVM) is a machine learning algorithm that can be used to classify data. SVM does this by maximizing the margin between two classes, where “margin” refers to the distance from both support vectors. SVM has been applied in many areas of computer science and beyond, including medical diagnosis software for tuberculosis detection, fraud detection systems, and more. This blog post consists of quiz comprising of questions and answers on SVM. This is a practice test (objective questions and answers) that can be useful when preparing for interviews. The questions in this and upcoming practice tests could prove to be useful, primarily, for data scientists or machine learning interns/ …
Machine Learning Examples from Daily Life
Machine learning is a powerful machine intelligence technique that can be used in a variety of settings to generate data insights. In this blog post, we will explore real-world or real-life machine learning / deep learning / AI examples from daily life. We’ll see how machine-learning techniques have been successfully applied to solve real-life problems. The idea is to make you aware of how machine learning and data science applications are everywhere. What are some real-world examples of machine learning from daily life? Here are some real-world examples of machine learning that we use in our daily life: Best driving directions (Google Maps): A bunch of machine learning / deep …
Stock Price Prediction using Machine Learning Techniques
In the past few decades, many advances have been made in the field of data analytics. Researchers are now able to predict stock prices with higher accuracy due to analytical predictive models. These predictive techniques utilize data from previous stock price movements and look for patterns that could indicate future stock price changes in the market. The use of these machine learning techniques will allow investors to make better decisions and invest more wisely by maximizing their returns and minimizing their losses. In this blog post, you will learn about some of the popular machine learning techniques in relation to making stock price movement (direction of stock price) predictions and …
I found it very helpful. However the differences are not too understandable for me