Tag Archives: machine learning

Who is a Data Scientist? Test your Knowledge

Interview questions

Do you know what a data scientist is? You may think you do, but take this quiz to find out for sure! Data scientists are essential to modern business and it’s important to know who they are and what they do. This quiz is just for fun, but it’s also a great opportunity to learn more about one of the most in-demand professions today. So put your data scientist knowledge to the test and see how well you really know this profession! And, feel free to share your thoughts if you disagree with the answer of any of the questions. Here are a few related posts on this topic: What …

Continue reading

Posted in Career Planning, Data, Data analytics, Data Science, Interview questions, Machine Learning. Tagged with , .

Interns – Machine Learning Interview Questions & Answers: Set 1

interns machine learning interview questions and answers

This page lists down first set of machine learning / data science interview questions and answers for interns / freshers / beginners. If you are an intern or a fresher or a beginner in machine learning field, and, you are looking for some practice tests before appearing for your upcoming machine learning interview, these practice tests would prove to be very useful and handy. Machine Learning topics covered in Test In this set, some of the following topics have been covered: Machine learning fundamentals (Supervised and unsupervised learning algorithms) Different types of machine learning problems and related algorithms with examples Concepts related with regression, classification and clustering Practice Test (Questions …

Continue reading

Posted in Career Planning, Data Science, Freshers, Interview questions, Machine Learning. Tagged with , , , .

Data-centric vs Model-centric AI: Concepts, Examples

Data centric vs model-centric AI

There is a lot of discussion around AI and which approach is better: model-centric or data-centric. In this blog post, we will explore both approaches and give examples of each. We will also discuss the benefits and drawbacks of each approach. By the end of this post, you will have a better understanding of both AI approaches and be able to decide which one is right for your business! As product managers and data science architects, you should be knowledgeable about both of these AI approaches so that you can make informed decisions about the products and services you build. Model-centric approach to AI Model-centric approach to AI is about …

Continue reading

Posted in AI, Data, Data analytics, Data Science, Machine Learning. Tagged with , , .

Data Science Architect Interview Questions

interview questions

In this post, you will learn about interview questions that can be asked if you are going for a data scientist architect job. Data science architect needs to have knowledge in both data science/machine learning and cloud architecture. In addition, it also helps if the person is hands-on with programming languages such as Python & R. Without further ado, let’s get into some of the common questions right away. I will add further questions in the time to come. Q1. How do you go about architecting a data science or machine learning solution for any business problem? Solving a business problem using data science or machine learning based solution can …

Continue reading

Posted in Career Planning, Data Science, Enterprise Architecture, Interview questions, Machine Learning. Tagged with , , , .

Sklearn SimpleImputer Example – Impute Missing Data

In this post, you will learn about how to use Python’s Sklearn SimpleImputer for imputing / replacing numerical & categorical missing data using different strategies. In one of the related article posted sometime back, the usage of fillna method of Pandas DataFrame is discussed. Handling missing values is key part of data preprocessing and hence, it is of utmost importance for data scientists / machine learning Engineers to learn different techniques in relation imputing / replacing numerical or categorical missing values with appropriate value based on appropriate strategies. SimpleImputer Python Code Example SimpleImputer is a class in the sklearn.impute module that can be used to replace missing values in a dataset, using a …

Continue reading

Posted in Data Science, Machine Learning, Python. Tagged with , , , .

Pandas dropna: Drop Rows & Columns with Missing Values

pandas dropna method code sample

In this blog post, we will be discussing Pandas’ dropna method. This method is used for dropping rows and columns that have missing values. Pandas is a powerful data analysis library for Python, and the dropna function is one of its most useful features. As data scientists, it is important to be able to handle missing data, and Pandas’ dropna function makes this easy. Pandas dropna Method Pandas’ dropna function allows us to drop rows or columns with missing values in our dataframe. Find the documentation of Pandas dropna method on this page: pandas.DataFrame.dropna. The dropna method looks like the following: DataFrame.dropna(axis=0, how=’any’, thresh=None, subset=None, inplace=False) Given the above method and parameters, the following …

Continue reading

Posted in Data Science, Machine Learning, Python. Tagged with , , .

Perceptron Explained using Python Example

In this post, you will learn about the concepts of Perceptron with the help of Python example. It is very important for data scientists to understand the concepts related to Perceptron as a good understanding lays the foundation of learning advanced concepts of neural networks including deep neural networks (deep learning).  What is Perceptron? Perceptron is a machine learning algorithm which mimics how a neuron in the brain works. It is also called as single layer neural network consisting of a single neuron. The output of this neural network is decided based on the outcome of just one activation function associated with the single neuron. In perceptron, the forward propagation of information happens. Deep …

Continue reading

Posted in Data Science, Deep Learning, Machine Learning, Python. Tagged with , , , .

Linear vs Non-linear Data: How to Know

Non-linear data set

In this post, you will learn the techniques in relation to knowing whether the given data set is linear or non-linear. Based on the type of machine learning problems (such as classification or regression) you are trying to solve, you could apply different techniques to determine whether the given data set is linear or non-linear. For a data scientist, it is very important to know whether the data is linear or not as it helps to choose appropriate algorithms to train a high-performance model. You will learn techniques such as the following for determining whether the data is linear or non-linear: Use scatter plot when dealing with classification problems Use …

Continue reading

Posted in AI, Data Science, Machine Learning. Tagged with , .

Insurance Machine Learning Use Cases

insurance machine learning use cases

As insurance companies face increasing competition and ever-changing customer demands, they are turning to machine learning for help. Machine learning / AI can be used in a variety of ways to improve insurance operations, from developing new products and services to improving customer experience. It would be helpful for product manager and data science architects to get a good understanding around some of the use cases which can be addressed / automated using machine learning / AI based solutions. In this blog post, we will explore some of the most common insurance machine learning / AI use cases. Stay tuned for future posts that will dive into each of these …

Continue reading

Posted in AI, Data Science, Insurance, Machine Learning, Product Management. Tagged with , , , .

Tail Spend Management & Spend Analytics

Tail spend analysis and analytics and machine learning

Do you know where your business is spending its money? And more importantly, do you know where your business SHOULD be spending its money? Many businesses don’t have a good handle on their tail spend – the money that’s spent on things that are not essential to the core operations of the company. Tail spend can be difficult to track and manage, but with the help of spend analytics tools and machine learning, it’s becoming easier than ever before. In this blog post, we’ll discuss what tail spend is, how to track it, and how to use analytics and machine learning to make better decisions about where to allocate your …

Continue reading

Posted in Data analytics, Data Science, Machine Learning, Procurement. Tagged with , , .

Healthcare & Machine Learning Use Cases / Projects

List of machine learning topics for learning

AI & Machine learning is being used more and more in the healthcare industry. This is because it has the potential to improve patient outcomes, make healthcare more cost-effective, and help with other important tasks. In this blog post, we will discuss some of the healthcare & AI / machine learning use cases that are currently being implemented. We will also talk about the benefits of using machine learning in healthcare settings. Stay tuned for an exciting look at the future of healthcare! What are top healthcare challenges & related AI / machine learning use cases? Before getting into understand how machine learning / AI can be of help in …

Continue reading

Posted in AI, Data analytics, Data Science, Healthcare, Machine Learning. Tagged with , , , .

Marketing Analytics Machine Learning Use Cases

marketing analytics machine learning use cases

If you’re like most business owners, you’re always looking for ways to improve your marketing efforts. You may have heard about marketing analytics and machine learning, but you’re not sure how they can help you. Marketing analytics is an essential tool for modern marketers. In this blog post, we will discuss some of the ways marketing analytics and AI / machine learning / Data science can be used to improve your marketing efforts. We’ll also give some real-world examples of how these technologies are being used by businesses today. So, if you’re ready to learn more about marketing analytics and machine learning, keep reading! What is marketing and what are …

Continue reading

Posted in AI, Data, Data analytics, Data Science, Machine Learning, Marketing. Tagged with , , , , .

Machine Learning Use Cases for Climate Change

Climate change is a serious issue facing the world. The climate changes which are already affecting our planet can be seen in rising sea levels, melting ice caps and glaciers, more severe storms and hurricanes, more droughts, and wildfires increased precipitation in some areas of the world while other regions experience less rainfall. It’s important that we do what we can to reduce climate change risks by reducing greenhouse gas emissions into the atmosphere as well as adapting to climate impacts. Artificial intelligence (AI), machine learning (ML)/ deep learning (DL), data science, advanced analytics have been widely used for decades across different industries such as finance, healthcare, etc., but their …

Continue reading

Posted in Climate Change, Data Science, Machine Learning. Tagged with , .

What is Human Data Science?

what is human data science

There’s a lot of buzz around the term “human data science.” What is it, and why should you care? Human data science is a relatively new field that combines the study of humans with the techniques of data science. By understanding human behavior and using big data techniques, unique and actionable insights can be obtained that weren’t possible before. In this blog post, we’ll discuss what human data science is and give some examples of how it’s being used today. What is human data science? Human data science is the study of humans using data science techniques. It’s a relatively new field that is growing rapidly as we learn more …

Continue reading

Posted in AI, Data, Data analytics, Data Science, Machine Learning. Tagged with , , .

Pricing Optimization & Machine Learning Techniques

pricing optimization and machine learning use cases

Pricing is a critical component of price optimization. In this blog post, we will dive into pricing optimization techniques and machine learning use cases. Price optimization techniques are used to optimize pricing for products or services based on customer response. AI / Machine learning can be leveraged in pricing optimization by using predictive analytics to predict consumer demand patterns and identify optimal prices for a products or services at a given time in the future. What is pricing optimization? Price optimization is a process where businesses use price discrimination to maximize revenue from customers. It is the process of pricing goods and services to maximize profits by taking into account …

Continue reading

Posted in Machine Learning, Optimization. Tagged with , .