Tag Archives: data
Data Lakehouses Fundamentals & Examples
Last updated: 12th May, 2024 Data lakehouses are a relatively new concept in the data warehousing space. They combine the scalability and cost-effectiveness of cloud storage-based data lakes with the flexibility, security, and performance of traditional data warehouses to create a powerful data management solution. But what exactly is a data lakehouse, how does it work, and how might it be used in your organization? In this blog post, we’ll explore the basics of data lakehouses and provide real-world examples to illustrate their value. What is a Data Lakehouse? Simply speaking, data lakehouses combine elements from both data warehouses and data lakes — hence the name “data lakehouse” — to …
AI-Ready Data Explained with Examples
AI-ready data usually refers to data that has been prepared in such a way that it can be effectively used for training artificial intelligence (AI) and generative AI models. In this blog, we will learn about what are the most common attributes of AI-ready data. The following are the top most 5 attributes that AI-ready data would need to have. Data must be: Check out this Gartner paper for further details – We Shape AI, AI shapes us.
Data Ingestion Types – Concepts & Examples
Last updated: 17th Nov, 2023 Data ingestion is the process of moving data from its original storage location to a data warehouse or other database for analysis. Data engineers are responsible for designing and managing data ingestion pipelines. Data can be ingested in different modes such as real-time, batch mode, etc. In this blog, we will learn the concepts about different types of data ingestion with the help of examples. What is Data Ingestion? Data ingestion is the foundational process of importing, transferring, loading, and processing data from various sources into a storage medium where it can be accessed, used, and analyzed by an organization. It’s akin to the first …
Data Analytics Explained: What, Why & How?
Data analytics has become a buzzword in the business world today, and for all good reasons indeed as it brings competitive advantage to the business if leveraged in the most appropriate manner. The ability to collect, process, and analyze large amounts of data in order to solve business problems has given organizations unprecedented insights into their operations, customers, and markets. By leveraging these insights, businesses can make informed decisions also called as data-driven decisions, identify new opportunities, and drive growth. But what exactly is data analytics? What are the different forms of data analytics? Why is it so important? And how can businesses leverage it to their advantage? How can …
Data value chain: Framework, Concepts
As organizations become increasingly data-driven, understanding the value of data is critical for success. The data value chain framework helps to identify and maximize the value of data by breaking it down into its components. In this post, we will explain what a data value chain is, why it’s important, and how to implement it. Data Value Chain Framework: Key Stages The data value chain (DVC) is a business model that helps organizations understand how to create, manage and utilize their data assets in order to realize maximum business value based on using them. It breaks down the various stages of an organization’s entire journey with its data into distinct …
Data Analysis Types: Concepts & Examples
Data analysis plays an important role in understanding the world, discovering trends, and making decisions. Having a good understanding of the different types of data analysis available is essential for anyone looking to make sense of their data. In this blog post, we’ll discuss the six different forms of data analysis and provide examples of each type so you can get a better idea of how they work. The following is a representation of six forms of data analysis. Before getting ahead and understand different form of analysis, lets understand what is Data Analysis? The word “analysis” comes from the Ancient Greek ἀνάλυσις (analysis, “a breaking-up” or “an untying;” from …
Data Quality Characteristics & Examples
It is no secret that data is an essential component in the day-to-day operations of businesses—as well as the decision making processes. To ensure trust and reliability on the data, organizations must pay close attention to the quality of their data. In this blog post, we will discuss some of the key characteristics that make up quality data, diving into each characteristic and providing examples along the way. Good data governance strategies are also essential for maintaining high quality datasets across an organization’s entire IT infrastructure. These strategies include quality control processes for entering new data into the system; establishing internal documents with procedures for validating all incoming information; assigning …
Data Governance Goals Explained with Examples
Data governance is an important element of any organization’s data management strategy. It provides a framework for creating, managing and monitoring data within an organization. This ensures that the data is accurate, consistent, secure, and compliant with all relevant regulations. It also allows organizations to make informed decisions based on quality data. In this blog post, we will explore the goals and objectives of good data governance and provide some examples to help you implement it in your organization. Here is the picture representing the most important goals of data governance: Protect the needs of data stakeholders Data governance helps protect the needs of data stakeholders by ensuring that the …
Data Catalog Concepts, Tools & Examples
A data catalog is a comprehensive collection of information about an organization’s data assets, and it serves as the foundation for making informed decisions about how to manage and use data. This includes all types of data, structured or unstructured, spread across multiple sources including databases, websites, stored documents, and more. A good data catalog should provide users with the ability to quickly identify what types of data are available within the organization, where they are located, and who owns them. In this blog, we will learn basic concepts of data catalog along with some examples. What is Data Catalog? A data catalog is a comprehensive inventory of all the …
Data Governance Framework Template / Example
Data governance is a framework that provides data management governance. It’s the process of structuring data so it can be governed, managed and used more effectively. Data governance framework forms the key aspect of data analytics strategy. This blog post will discuss key functions of a standard data governance framework and can be taken as a template or example to help you get started with setting up your data governance program. What is Data Governance Framework? Data governance can be defined as enterprise-wide management of data from availability, usability, security and integrity standpoint. The data governance framework is intended to put some structure around how data can be managed and …
Data Warehouse vs. Data Lake – Differences, Examples
When it comes to data storage, there are two distinct types of solutions that you can use—a data warehouse and a data lake. Both of these solutions have their own benefits, but it’s important to understand the key differences between them so that you can choose the best option for your needs. Let’s take a closer look at what makes each solution unique. What is a Data Warehouse? A data warehouse is defined as an electronic storage system used for reporting and analysis. Data warehouses store data in a structured (row-column) format. It typically contains aggregated collections of data from multiple sources, which come together in one database. A data warehouse …
Designing & Building Data Products – Best Practices
For those in the analytics industry, designing and building data products is a critical part of the job. It’s important to understand how to design and build data products that are useful, efficient, effective and loved by the end customers. In this blog post, we will discuss some best practices for designing and developing innovative data products. It’s important to keep these best practices in mind when developing data products / solutions as they can help ensure your product is successful. Call out Decision – Action – Outcome Hypothesis It is important to call out decision-action-outcome hypotheses when building data products because it serves as a blueprint for designing, testing …
Data Warehouse Concepts & Examples
A data warehouse is a system used for reporting and data analysis, and is considered a core component of business intelligence. Data warehouses are centralized repositories of integrated data from one or more disparate sources. They store current and historical data in one single place that can be used to answer business questions. Data warehouses are used to support business intelligence applications. Business intelligence applications are used to make decisions about the operation of the business. A data warehouse is usually populated with data from an operational database, which contains transactions. The process of populating the data warehouse is called Extract, Transform, and Load (ETL). This process cleans, transforms, and …
Top Healthcare Data Aggregation Companies
Data aggregation is the process of collecting data from multiple sources and compiling it into a single database. This process is essential for healthcare professionals, companies and startups because it allows them to track and analyze patient data, which can be used to improve patient care. There are many companies that offer healthcare data aggregation services. However, not all of them are created equal. To help you choose the right company for your needs, we’ve compiled the following list of the top healthcare data aggregation companies. This list will be updated from time-to-time. Athenahealth: Athenahealth is a healthcare data aggregation company that provides electronic health records, practice management software, and …
Role of Data in Digital Transformation
In order to understand the role of data in digital transformation, it is important to first understand what digital transformation is. Digital transformation is the process of using digital technologies to create new or improved business processes, products, or services. This can be done through the use of big data, cloud computing, mobile technologies, and the Internet of Things (IoT). Data is a key enabler of digital transformation. It helps organizations to identify new opportunities, make better decisions, and improve operational efficiency. Big data, in particular, is playing an increasingly important role in digital transformation initiatives. Big data refers to large volumes of data that can be structured, unstructured, or …
Data Lineage Concepts, Examples & Tools
Data lineage can be a complex and confusing topic. It’s hard to know where your data comes from, how it’s been changed, and what the impact of those changes has been. Data lineage tools make tracing data easy and straightforward. By understanding your data’s history you can more effectively troubleshoot issues, optimize processes, and make better decisions. In this blog, you will learn about data lineage concepts, examples, and tools. As a data professional, you must have a strong understanding of data lineage. What is Data Lineage and why is it important? Data lineage is a term used in data management to describe the path that data takes from its …
I found it very helpful. However the differences are not too understandable for me