Category Archives: Machine Learning

AIC & BIC for Selecting Regression Models: Formula, Examples

model selection using AIC and BIC

When working with regression models, selecting the most appropriate machine learning model is a critical step toward understanding the relationships between variables and making accurate predictions. With numerous regression models available, it becomes essential to employ robust criteria for model selection. This is where the two most widely used criteria come to the rescue. They are the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). In this blog, we will learn about the concepts of AIC, BIC and how they can be used to select the most appropriate machine learning regression models. AIC & BIC Concepts Explained with Formula In model selection for regression analysis, we often face …

Continue reading

Posted in Machine Learning, Python. Tagged with , .

Recommender Systems in Machine Learning: Examples

collaborative filtering - recommender system

Recommender systems are used in machine learning to predict the ratings or preferences of items for a given user. They are commonly used in e-commerce applications to suggest items that a user may be interested in. One common example of a recommender system is Netflix. Netflix uses a recommender system to suggest movies and TV shows that a user may want to watch. The algorithm looks at past ratings and preferences to make suggestions. In this blog post, you will learn about recommender systems and some of the different types of recommender systems with the help of examples. Recommender systems make use of machine learning to predict the ratings or …

Continue reading

Posted in Data Science, Machine Learning. Tagged with , .

Binomial Distribution Explained with Examples

binomial experiment coin tossing 100 experiments 50 trials

Have you ever wondered how to predict the number of successes in a series of independent trials? Or perhaps you’ve been curious about the probability of achieving a specific outcome in a sequence of yes-or-no questions. If so, we are essentially talking about the binomial distribution. It’s important for data scientists to understand this concept as binomials are used often in business applications. The binomial distribution is a discrete probability distribution that applies to binomial experiments (experiments with binary outcomes). It’s the number of successes in a specific number of trials. Sighting a simple yet real-life example, the binomial distribution may be imagined as the probability distribution of a number …

Continue reading

Posted in AI, Data Science, Machine Learning, statistics. Tagged with , , .

Model Cards Example Machine Learning

model card example machine learning

Have you ever wondered how to make your machine learning models more transparent, understandable, and accountable? Are you looking to implement responsible AI practices including ways and means to review and improve your existing model documentation? If so, you will learn about the concept of model cards, a powerful tool for documenting important details about machine learning models. You will learn the concepts with concrete examples and best practices that can serve as a guide for implementing or improving model cards in your organizations. The model card example can be seen as an standard template for model card which gets used in various different companies such as Google. What are …

Continue reading

Posted in Machine Learning, Responsible AI. Tagged with , .

Top US Universities for AI / ML Research

Artificial Intelligence (AI) has become an essential driver of innovation and economic growth in the 21st century. As a result, some of the best universities in the United States have been investing heavily in AI research to push the boundaries of this rapidly evolving field. In this blog post, we will explore the top 10 US universities for AI research, highlighting their achievements and providing links to their AI research homepages. Several leading / best universities in the United States have emerged as pioneers in AI research, recognizing its crucial role in driving innovation and economic growth. These institutions have made significant investments to establish themselves as top destinations for …

Continue reading

Posted in Admissions, AI, Career Planning, Machine Learning. Tagged with .

Hold-out Method for Training Machine Learning Models

Hold-out-method-Training-Validation-Test-Dataset

The hold-out method for training the machine learning models is a technique that involves splitting the data into different sets: one set for training, and other sets for validation and testing. The hold-out method is used to check how well a machine learning model will perform on the new data.  In this post, you will learn about the hold-out method used during the process of training the machine learning model. Do check out my post on what is machine learning? concepts & examples for a detailed understanding of different aspects related to the basics of machine learning. Also, check out a related post on what is data science? When evaluating …

Continue reading

Posted in Data Science, Machine Learning. Tagged with , .

Procurement Advanced Analytics Use Cases

procurement analytics use cases

The procurement analytics applications are poised to grow exponentially in the next few years. With so much data available and the need for digital transformation across procurement organization, it’s important to know how procurement analytics can help you make better business decisions. This blog will cover procurement analytics and key use cases of advanced analytics that will be useful for business stakeholders such as category managers, sourcing managers, supplier relationship managers, business analysts / product managers, and data scientists implement different use cases using machine learning. Procurement analytics will allow you to use data very effectively in achieving data-driven decision making.  Procurement analytics use cases can be initiated by utilizing …

Continue reading

Posted in Data Science, Machine Learning, Procurement. Tagged with , , .

Demystifying Encoder Decoder Architecture & Neural Network

encoder decoder architecture

In the field of AI / machine learning, the encoder-decoder architecture is a widely-used framework for developing neural networks that can perform natural language processing (NLP) tasks such as language translation, etc which requires sequence to sequence modeling. This architecture involves a two-stage process where the input data is first encoded into a fixed-length numerical representation, which is then decoded to produce an output that matches the desired format. As a data scientist, understanding the encoder-decoder architecture and its underlying neural network principles is crucial for building sophisticated models that can handle complex data sets. By leveraging encoder-decoder neural network architecture, data scientists can design neural networks that can learn …

Continue reading

Posted in Deep Learning, Generative AI, Machine Learning, NLP. Tagged with , , , .

Google Unveils Next-Gen LLM, PaLM-2

PaLM 2 Apps

Google’s breakthrough research in machine learning and responsible AI has culminated in the development of their next-generation large language model (LLM), PaLM 2. This model represents a significant evolution in natural language processing (NLP) technology, with the capability to perform a broad array of advanced reasoning tasks, including code and math, text classification and question answering, language translation, and natural language generation. The unique combination of compute-optimal scaling, an improved dataset mixture, and model architecture enhancements is what powers PaLM 2’s exceptional capabilities. This combination allows the model to achieve superior performance than its predecessors, including the original PaLM, across all tasks. PaLM 2 was built with Google’s commitment to …

Continue reading

Posted in Generative AI, Machine Learning. Tagged with , .

Occam’s Razor in Machine Learning: Examples

Occam's Razor in Machine Learning

“Everything should be made as simple as possible, but not simpler.” – Albert Einstein Consider this: According to a recent study by IDC, data scientists spend approximately 80% of their time cleaning and preparing data for analysis, leaving only 20% of their time for the actual tasks of analysis, modeling, and interpretation. Does this sound familiar to you? Are you frustrated by the amount of time you spend on complex data wrangling and model tuning, only to find that your machine learning model doesn’t generalize well to new data? As data scientists, we often find ourselves in a predicament. We strive for the highest accuracy and predictive power in our …

Continue reading

Posted in Data Science, Machine Learning. Tagged with , .

Outlier Detection Techniques in Python: Examples

Outlier detection Python Machine Learning

In the realm of data science, mastering outlier detection techniques is paramount for ensuring data integrity and robust machine learning model performance. Outliers are the data points which deviate significantly from the norm. The outliers data points can greatly impact the accuracy and reliability of statistical analyses and machine learning models. In this blog, we will explore a variety of outlier detection techniques using Python. The methods covered will include statistical approaches like the z-score method and the interquartile range (IQR) method, as well as visualization techniques like box plots and scatter plots. Whether you are a data science enthusiast or a seasoned professional, it is important to grasp these …

Continue reading

Posted in Data Science, Machine Learning, Python. Tagged with , , .

R-squared & Adjusted R-squared: Differences, Examples

r-squared vs adjusted r-squared

There are two measures of the strength of linear regression models: adjusted r-squared and r-squared. While they are both important, they measure different aspects of model fit. In this blog post, we will discuss the differences between adjusted r-squared and r-squared, as well as provide some examples to help illustrate their meanings. As a data scientist, it is of utmost importance to understand the differences between adjusted r-squared and r-squared in order to select the most appropriate linear regression model out of different regression models. What is R-squared? R-squared, also known as the coefficient of determination, is a measure of what proportion of the variance in the value of the …

Continue reading

Posted in Data Science, Machine Learning. Tagged with , .

Lime Machine Learning Python Example

LIME Output of Linear Regression Model

Today when core businesses have started relying on machine learning (ML) models predictions, interpreting complex models has become a necessary requirement of AI governance (responsible AI). Data scientists are often asked to explain the inner workings of a machine learning models for understanding how the decisions are made. The Problem? Many of these models stand out as “black boxes“, delivering predictions without any comprehensible reasoning. This lack of transparency (especially in healthcare & finance use cases) can lead to mistrust in model predictions and inhibit the practical application of machine learning in fields that require a high degree of interpretability. It could lead to erroneous decision-making, or worse, legal and …

Continue reading

Posted in Machine Learning, Responsible AI. Tagged with .

Boston Housing Dataset Linear Regression: Predicting House Prices

boston housing dataset linear regression models

Predicting house prices accurately is crucial in the real estate industry. However, it can be challenging to determine the factors that significantly impact house prices. Without a clear understanding of these factors, accurate predictions are difficult to achieve. The Boston Housing Dataset addresses this problem by providing a comprehensive set of variables that influence house prices in the Boston area. However, effectively utilizing this dataset and building robust predictive models require appropriate techniques and evaluation methods. In this blog, we will provide an overview of the Boston Housing Dataset and explore linear regression, LASSO, and Ridge regression as potential models for predicting house prices. Each model has its unique properties …

Continue reading

Posted in Data Science, Machine Learning. Tagged with , .

ChatGPT Cheat Sheet for Data Scientists

ChatGPT Cheat Sheet for Data Scientists

With the explosion of data being generated, data scientists are facing increased pressure to analyze and interpret large amounts of text data effectively. However, this can be a challenging task, especially when dealing with unstructured data. Additionally, data scientists often spend a significant amount of time manually generating text and answering complex questions, which can be a time-consuming process. Welcome ChatGPT! ChatGPT offer a powerful solution to these challenges. By learning different ChatGPT prompts, data scientists can significantly become super productive while generating relevant insights, answer complex questions, and perform machine learning tasks with ease such as data preprocessing, hypothesis testing, training models, etc. In this blog, I will provide …

Continue reading

Posted in ChatGPT, Data Science, Generative AI, Machine Learning. Tagged with , , , .

How does Dall-E 2 Work? Concepts, Examples

DALL-E 2 architecture

Have you ever wondered how generative AI is converting words into images? Or how generative AI models create a picture of something you’ve only described in words? Creating high-quality images from textual descriptions has long been a challenge for artificial intelligence (AI) researchers. That’s where DALL-E and DALL-E 2 comes in. In this blog, we will look into the details related to Dall-E 2. Developed by OpenAI, DALL-E 2 is a cutting-edge AI model that can generate highly realistic images from textual descriptions. So how does DALL-E 2 work, and what makes it so special? In this blog post, we’ll explore the key concepts and techniques behind DALL-E 2, including …

Continue reading

Posted in Deep Learning, Generative AI, Machine Learning. Tagged with , .