Tag Archives: Data Science

Data Science – Top 5 Videos to Learn Bayes’ Theorum

This article represents the top 5 videos that I thought to be great when I was trying to understand Bayes theorum from Youtube channels. Please feel free to comment/suggest if I missed to mention one or more important points. Also, sorry for the typos.   Following are top 5 videos that I found quite useful to understand Bayes theorum: Bayes’ Theorum Formula: This one, I liked most. Very short and sweet video which explains about Bayes theorum with a very nice example of economy and stock values in just 6 minutes. For beginners, I would recommend this to be first video to get started with Bayes theorum. Bayes Theorum with …

Continue reading

Posted in Big Data. Tagged with , .

Data Science – 6 Steps to Perform Data Analysis using R

data analysis

This article represents steps that one could take to perform data analysis on available datasets using data science (machine learning algorithms) with the help of R programming language. The objective of this article is to introduce an approach for data science beginners to get started with data analysis. However, as you get experience you could adopt your own techniques that works for you. These are just my thoughts and there could be better way of approaching data analysis. Please feel free to comment/suggest if I missed to mention one or more important points. Also, sorry for the typos. Following are the key steps which could be taken as a blueprint …

Continue reading

Posted in Big Data. Tagged with .

Learn R – Different Data Types with Code Examples

R Data Types

This article represents quick concepts on key data types in R programming language, along with code examples and some good go-to links for further read. For those new to R, I would like to quickly re-iterate that R programming language helps in performing data analysis and, is an integral part of data science as a practice. In other words, it is one of the go-to language/platform for data scientist to work with the data. Please feel free to comment/suggest if I missed to mention one or more important points. Also, sorry for the typos. Following are different data types in R that would be discussed in this article: Vector List Factor …

Continue reading

Posted in Big Data. Tagged with .

Learn R – What are Vectors – Code Examples

vector

This article represents high level concepts in relation with Vector data type in R programming language along with code samples. For those new to R language, it should be noted that R provides a console-based platform to perform analysis on data. R can be seen as a programming language for data scientist. Please feel free to comment/suggest if I missed to mention one or more important points. Also, sorry for the typos. Following are the key points described later in this article: What are Vectors? Vectors – Code Examples   What are Vectors? Vector, in R, can be defined as a collection of things of same data type. Simply speaking, it …

Continue reading

Posted in Big Data. Tagged with , .

Data Science – Commonly Used Plot Parameters in R Programming

This article represents some of the commonly used plot parameters across different plot commands, while you are working with different kind of plots in R. Please feel free to comment/suggest if I missed to mention one or more important points. Also, sorry for the typos. Following are the key points described later in this article: What are some of the common plots (commands) in R? Commonly Used Plot Parameters   What are some of the common plots (commands) in R? Following represents some of the plots (commands) used in R language for different purposes. I shall be writing different blog on different use-cases where one should use one or more …

Continue reading

Posted in Big Data. Tagged with , .

Data Science – Why Learn R?

This article represents thoughts on why it is OK to learn yet another programming language named as R for doing data analysis. Please feel free to comment/suggest if I missed to mention one or more important points. Also, sorry for the typos. Following are the some of the key points described later in this article: Why can’t I use Java/C etc for data analysis? Key Aspects of Data Analysis vis-a-vis R Language Why R fundamentally? Advantages & Disadvantages of R   Why can’t I use Java/C etc for data analysis? I have worked a lot with Java/C/PHP/C++ etc in my career. From whatever I have known about R by now, …

Continue reading

Posted in Big Data. Tagged with , .

Key to Big Data: Data Science & Data Framework

Good familiarity with data science is key to getting on board with Big Data implementations. Almost all software services provider has added another link for Big Data for their services offerings. Most of them have an understanding that a Hadoop team comprising of technical team familiar with Hadoop technology stack shall be able to successfully implement Big Data project. However, this is far from the reality. One of the keys to successful Big Data implementation projects is “Data Science“. And, another aspect is “Data Framework“. The two when done jointly would get a team do successful Big Data implementation. What is Data Science? Data Science, simply speaking, is understanding meta-data …

Continue reading

Posted in Big Data. Tagged with , , .

Big Data is NOT Just about Hadoop Stack Implementation

That is something any one can with a decent technical skill and Java experience could do it. Big Data has lot to do with Data science. And, to stand out as a Big Data solution provider in the IT marketplace, one needs to have a team of Data scientist who work with technologist to implement Big data solution suggested by them. Thus, following is how the Big Data team may look like? Project/Delivery Manager Data Scientist Technical Architect (Hadoop) Technical team including team/tech lead, developers, testers etc Build/Configuration Engineer: This may be important owing to the Big Data typical cluster configurations requirement and the complexities surrounding it. What is a …

Continue reading

Posted in Big Data. Tagged with , .