Machine Learning – When to Use Linear vs Guassian Kernel with SVM

This article represents guidelines which could be used to decide whether to use Linear kernel or Gaussian kernel when working with Support Vector Machine (SVM). Please feel free to comment/suggest if I missed to mention one or more important points. Also, sorry for the typos.

Following are the key points described later in this article:

  • When to Use Linear Kernel
  • When to Use Gaussian Kernel

 

When to Use Linear Kernel

In case there are large number of features and comparatively smaller number of training examples, one would want to use linear kernel. As a matter of fact, it can also be called as SVM with No Kernel. One may recall that SVM with no kernel acts pretty much like logistic regression model where following holds true:

  • Predict Y = 1 when W.X >= 0. Note that, in the prior equation, W is actually W transpose and also includes bias factor.
  • Predict Y = 0 when W.X < 0.

Simply speaking, one may want to use SVM with linear kernel when data distribution is linearly separable.

 

When to Use Gaussian Kernel

In scenarios, where there are smaller number of features and large number of training examples, one may use what is called Gaussian Kernel. When working with Gaussian kernel, one may need to choose the value of variance (sigma square). The selection of variance would determine the bias-variance trade-offs. Higher value of variance would result in High bias, low variance classifier and, lower value of variance would result in low bias/high variance classifier.

 

Ajitesh Kumar
Follow me
Latest posts by Ajitesh Kumar (see all)

Ajitesh Kumar

I have been recently working in the area of Data Science and Machine Learning / Deep Learning. In addition, I am also passionate about various different technologies including programming languages such as Java/JEE, Javascript, Python, R, Julia etc and technologies such as Blockchain, mobile computing, cloud-native technologies, application security, cloud computing platforms, big data etc. I would love to connect with you on Linkedin.
Posted in Big Data. Tagged with , , .

Leave a Reply

Your email address will not be published. Required fields are marked *

Time limit is exhausted. Please reload the CAPTCHA.