Z-tests are statistical hypothesis testing techniques that are used to determine whether the null hypothesis relating to comparing sample means or proportions with that of population at a given significance level can be rejected or otherwise based on the z-statistics or z-score. As a data scientist, you must get a good understanding of the z-tests and its applications to test the hypothesis for your statistical models. In this blog post, we will discuss an overview of different types of z-tests and related concepts with the help of examples. You may want to check my post on hypothesis testing titled – Hypothesis testing explained with examples
Z-tests can be defined as statistical hypothesis testing techniques that are used to quantify the hypothesis testing related to claim made about the population parameters such as mean and proportion. Z-test uses the sample data to test the hypothesis about the population parameters (mean or proportion). There are different types of Z-tests which are used to estimate the population mean or proportion, or, perform hypotheses testing related to samples’ means or proportions.
There are following different types of Z-tests which are used to perform different types of hypothesis testing.
Four variables are involved in the Z-test for performing hypothesis testing for different scenarios. They are as follows:
The following are different scenarios when Z-test can be used:
Here is a list of a few interview questions you may expect in your data scientists interview:
Artificial Intelligence (AI) agents have started becoming an integral part of our lives. Imagine asking…
In the ever-evolving landscape of agentic AI workflows and applications, understanding and leveraging design patterns…
In this blog, I aim to provide a comprehensive list of valuable resources for learning…
Have you ever wondered how systems determine whether to grant or deny access, and how…
What revolutionary technologies and industries will define the future of business in 2025? As we…
For data scientists and machine learning researchers, 2024 has been a landmark year in AI…