Artificial intelligence (AI) / Machine learning (ML) techniques are getting more and more popular. Many people use machine learning to analyze the sentiment of tweets, for example, to make predictions related to different business areas. In this blog post, you will learn about different machine learning / deep learning and NLP techniques which can be used for sentiment analysis.
Sentiment analysis is about predicting the sentiment of a piece of text and then using this information to understand users’ (such as customers) opinions. . The principal objective of sentiment analysis is to classify the polarity of textual data, whether it is positive, negative, or neutral. Whether the end-user sentiment is positive or negative or neutral can be used to answer many different business questions. The text whose sentiment needs to be processed can be extracted from many different sources, but in the current scenario, sentiment analysis is mostly about tweets and reviews.
The unprecedented abundance of data available on the internet on different social media websites has attracted business and research interest from various different fields including marketing, political science, and social studies, etc. The following are some example questions that can be dealt with using sentiment analysis.
People employ three different modalities to communicate in a coordinated manner. They are the following:
Sentiment analysis would require the representation of all of the above modalities to estimate the human sentiment in the most accurate manner. Multimodal representation learning has shown great progress in a large variety of tasks including emotion recognition, sentiment analysis. Multimodal sentiment analysis is a trending area of research, and multimodal fusion is one of its most active topics.
One form of sentiment analysis is aspect-based sentiment analysis (ASBA). Aspect-based sentiment analysis is a task in which the sentiment for each aspect of an entity is determined. Aspects can be a feature, a characteristic, or behavior of a product or an entity, such as the ambiance of a restaurant, the performance of a laptop, the display of a phone, and so on. Customer feedback about the aspects can help manufacturers and merchants develop ways including modifying products and services offerings in order to increase customer happiness. Thousands of customer reviews covering various aspects and their corresponding opinions can be found on the review pages/sections of any product.
Another form of sentiment analysis is visual sentiment analysis. There is increasing attention in visual sentiment analysis driven by the need for more and more people to share their feelings with images, emojis, and other visual content. Visual sentiment analysis is defined as a machine learning task to classify whether a given image shows a positive, negative or neutral sentiment. The visual sentiment is related to social media marketing and customer feedback analysis. It’s been utilized in many areas, including advertising and market research, where photos are shared on a variety of internet sites, such as Facebook, Twitter, Instagram, and others., for the purpose of promotion of products/services and gathering feedback from users.
Sentiment analysis can be done using techniques related to natural language processing (NLP) and machine learning. NLP techniques such as bag-of-words (BoW) and term frequency-inverse document frequency (TF-IDF) can be used. Machine learning algorithms such as Support Vector Machine (SVM), Logistic Regression, Multinomial Naive Bayes, Random Forest, artificial neural networks (ANN), deep learning techniques such as LSTM, bi-directional LSTM etc.
NLP techniques are used to pre-process and vectorize the text data. The vectorized data is then used for training different machine learning models based on different algorithms. The following is the list of different steps required to train the model for sentiment analysis:
For training the machine learning models, the text data would need to be manually labeled. For example, in sentiment analysis related to tweets and reviews, machine learning models are trained with labeled data of sentiments.
In visual sentiment analysis, machine learning is used to classify the sentiments of images based on their colors, texture, shape, etc. A machine learning approach first learns about different types of inputs (images with different sentiments), and then uses this information to label new unlabeled data as either positive or negative sentiment. With the successes of deep neural networks (CNN) in conventional computer vision tasks, numerous methods have been proposed to conduct visual sentiment analysis and have shown clear advantages over traditional methods with handcrafted features. There are, however, challenges related to visual sentiment analysis such as data labeling. The data labels for visual sentiment analysis are inherently subjective and error-prone since it can be confusing for humans to recognize the sentiment of images.
The following represents some real-world examples of machine learning applications that use machine learning to analyze the sentiment of texts:
In this blog post, we’ve discussed machine learning techniques that can be used for sentiment analysis. Whether you need to predict the polarity of a text or analyze customer reviews about your product, machine learning is an excellent way to do so. In order to train a machine learning model, it requires vectorizing textual data and dividing it into training and testing groups. Once that’s complete, there are many machine learning algorithms from which can be used to classify texts as positive or negative sentiment based on their features.
In recent years, artificial intelligence (AI) has evolved to include more sophisticated and capable agents,…
Adaptive learning helps in tailoring learning experiences to fit the unique needs of each student.…
With the increasing demand for more powerful machine learning (ML) systems that can handle diverse…
Anxiety is a common mental health condition that affects millions of people around the world.…
In machine learning, confounder features or variables can significantly affect the accuracy and validity of…
Last updated: 26 Sept, 2024 Credit card fraud detection is a major concern for credit…