Data Science

Python – How to Plot Learning Curves of Classifier

In this post, you will learn a technique using which you could plot the learning curve of a machine learning classification model. As a data scientist, you will find the Python code example very handy.

In this post, the plot_learning_curves class of mlxtend.plotting module from mlxtend package is used. This package is created by Dr. Sebastian Raschka

Lets train a Perceptron model using iris data from sklearn.datasets.

# Load the packages
import numpy as np
import pandas as pd
import Matplotlib.pyplot as plt

from sklearn.linear_model import Perceptron
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score
from sklearn import datasets

# Load the datasets
#
iris = datasets.load_iris()
X = iris.data
Y = iris.target

# Create training / test split; Note the stratification
# 
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3, random_state=1, stratify=Y)

# Perform feature scaling
sc = StandardScaler()
sc.fit(X_train)
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)

# Fit / train the model
prcptrn = Perceptron(eta0=0.1, random_state=1)
prcptrn.fit(X_train_std, Y_train)

# Check the accuracy of the model
Y_predict_std = prcptrn.predict(X_test_std)
print("Accuracy Score %.3f" % accuracy_score(Y_test, Y_predict_std))

The accuracy of the model comes out to be 0.956 or 95.6%. Next, we will want to see how did the learning go.  In order to do that, we will use plot_learning_curves class of mlxtend.plotting module. Here is a post on how to install mlxtend with Anaconda.

# Load the plot_learning_curves class
from mlxtend.plotting import plot_learning_curves

# Plot the learning curves
plot_learning_curves(X_train_std, Y_train, X_test_std, Y_test, prcptrn)

The following would be output plot of the learning curve:

Fig 1. Perceptron Classifier Learning Curve using Python Mlxtend Package

It might be noticed that as the training set size increases, the model performance increases in terms of decrease in number of misclassification.

Latest posts by Ajitesh Kumar (see all)
Ajitesh Kumar

I have been recently working in the area of Data analytics including Data Science and Machine Learning / Deep Learning. I am also passionate about different technologies including programming languages such as Java/JEE, Javascript, Python, R, Julia, etc, and technologies such as Blockchain, mobile computing, cloud-native technologies, application security, cloud computing platforms, big data, etc. I would love to connect with you on Linkedin. Check out my latest book titled as First Principles Thinking: Building winning products using first principles thinking.

Recent Posts

What are AI Agents? How do they work?

Artificial Intelligence (AI) agents have started becoming an integral part of our lives. Imagine asking…

2 weeks ago

Agentic AI Design Patterns Examples

In the ever-evolving landscape of agentic AI workflows and applications, understanding and leveraging design patterns…

2 weeks ago

List of Agentic AI Resources, Papers, Courses

In this blog, I aim to provide a comprehensive list of valuable resources for learning…

2 weeks ago

Understanding FAR, FRR, and EER in Auth Systems

Have you ever wondered how systems determine whether to grant or deny access, and how…

3 weeks ago

Top 10 Gartner Technology Trends for 2025

What revolutionary technologies and industries will define the future of business in 2025? As we…

3 weeks ago

OpenAI GPT Models in 2024: What’s in it for Data Scientists

For data scientists and machine learning researchers, 2024 has been a landmark year in AI…

3 weeks ago