Last updated: 15th Dec, 2023
In the ever-evolving landscape of machine learning, two regression algorithms stand out for their simplicity and effectiveness: Linear Regression and Logistic Regression. But what exactly are these algorithms, and how do they differ from each other? At first glance, logistic regression and linear regression might seem very similar – after all, they share the word “regression.” However, the devil, as they say, is in the details. Each method is uniquely tailored to solve specific types of problems, and understanding these subtleties is key to unlocking their full potential.
Linear regression and logistic regression are both machine learning algorithms used for modeling relationships between variables but perform different tasks. Linear regression is used to model linear relationships and predict value of a continuous response variable, while logistic regression is used to model binary outcomes (i.e. whether or not an event happened) in form of predicting value of categorical response variable. In this blog post, we will discuss the differences between linear vs logistic regression, as well as when to use each one. We will also provide examples so that you can understand how they work.
Linear regression is a statistical method used in machine learning for predictive modeling. It models linear relationships between a continuous dependent variable and one or more independent variables including both categorical and continuous variables.
For example, let’s say we want to do predictive modeling around predicting house prices based on various features. Using a linear regression model, we can establish a relationship between the house price (dependent variable) and features like square footage, number of bedrooms, location, and age of the house (independent variables). The model will attempt to fit a linear equation to this data, enabling us to predict the price of a house given its characteristics.
Two common forms are simple linear regression (one independent variable) and multiple linear regression (two or more – multiple independent variables). The following are the formula and examples:
Simple Linear Regression:
Multiple Linear Regression:
The coefficients of best-fit linear regression models are learned using the least-squares method. The least-squares method is a mathematical procedure for finding the line of best fit for a set of data points. The cost function for linear regression is the sum of the squared residuals. The residual is the difference between the actual value and the predicted value. The gradient descent algorithm is used to find the line of best fit by minimizing the cost function.
Linear regression models are evaluated using R-squared and adjusted R-squared. R-squared represents the variation of the value of dependent variables which is explained by the linear regression model. The greater the value of R-squared, the better is the linear regression model. Adjusted R-squared is used when there are multiple independent variables in the linear regression model. It adjusts for the addition of variables and only increases if the new variable actually improves the model. Read further details in some of the following blogs:
Some of the real-world examples where linear regression models can be used are as follows:
The following is the Python code used for training a linear regression model using the sklearn diabetes dataset.
from sklearn.datasets import load_diabetes from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error, r2_score # Load the diabetes dataset diabetes_data = load_diabetes() X = diabetes_data.data y = diabetes_data.target # Splitting the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # Create linear regression object linear_regressor = LinearRegression() # Train the model using the training sets linear_regressor.fit(X_train, y_train) # Make predictions using the testing set y_pred = linear_regressor.predict(X_test) # The coefficients coefficients = linear_regressor.coef_ # The mean squared error mse = mean_squared_error(y_test, y_pred) # The coefficient of determination: 1 is perfect prediction r2 = r2_score(y_test, y_pred) coefficients, mse, r2
Logistic Regression is a statistical method used for analyzing datasets where one or more independent variables determine an outcome. This method is particularly useful in two main types of classification problems. First, in binary classification, where the outcome is a dichotomous variable with only two possible outcomes. Here, Logistic Regression is employed to predict the probability of a binary outcome, such as ‘yes’ or ‘no’, ‘success’ or ‘failure’, based on one or more predictor variables. Secondly, it extends to multinomial classification, which deals with scenarios where the outcome can fall into one of three or more categories. Read further details on this blog – Logistic regression explained with Python example
The following are some of the key features of logistic regression:
Logistic regression models are evaluated using accuracy and the AUC-ROC curve. Accuracy represents the percentage of correctly predicted values (i.e. true positives + true negatives) out of all predicted values. In addition, other evaluation metrics such as precision, recall, and F-measure can also be used to evaluate the logistic regression model. The AUC-ROC curve is a graphical representation of how well the logistic regression model can discriminate between positive and negative outcomes. The greater the area under the curve, the better is the logistic regression model.
In logistic regression, the cost function used to estimate the error of the model is the cross entropy loss, also known as log loss. It measures the performance of a classification model whose output is a probability value between 0 and 1. The loss increases as the predicted probability diverges from the actual label. The formula for cross entropy loss is (ylog(p) + (1 – y)log(1 – p)) , where y
is the binary indicator (0 or 1) of the class label, and p
is the predicted probability.
Some of the real-world examples where logistic regression models can be used are:
The following Python code trains a logistic regression model using the IRIS dataset from scikit-learn. The model achieved an accuracy of 100% on the test set. This means that the logistic regression model was able to perfectly predict the species of all Iris flowers in the test set. This high level of accuracy is indicative of the distinctiveness of the features in the Iris dataset, which makes it relatively easier for classification models like logistic regression to perform well
from sklearn.datasets import load_iris from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # Load the Iris dataset iris = load_iris() X = iris.data y = iris.target # Splitting the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # Create logistic regression object logistic_regressor = LogisticRegression(max_iter=1000) # Train the model using the training sets logistic_regressor.fit(X_train, y_train) # Make predictions using the testing set y_pred = logistic_regressor.predict(X_test) # The accuracy of the model accuracy = accuracy_score(y_test, y_pred) accuracy
Having explored both linear and logistic regression, it’s clear that while they share some similarities, they are fundamentally different in several key aspects. The following is the list of differences between linear and logistic regression:
Aspect | Linear Regression | Logistic Regression |
---|---|---|
Dependent Variable | Continuous and unbounded (e.g., temperature, prices) | Categorical, often binary (e.g., yes/no outcomes) |
Model Output | Continuous value (e.g., weight, salary) | Probabilities, mapped to classes (e.g., spam vs. not spam) |
Use Case Scenarios | Predicting trends and outcomes in continuous data | Classification tasks, predicting likelihoods |
Assumptions | Linearity, homoscedasticity, normal distribution of errors | No linear relationship required; binary/ordinal dependent variable |
Result Interpretation | Coefficients represent change in dependent variable per unit change in independent variable | Coefficients used for odds ratios, indicating change in odds per unit change in independent variable |
The choice between logistic and linear regression depends significantly on the data and the specific analytical question. Linear regression is more suited for modeling continuous outcomes, while logistic regression is preferred for classification and probability estimation tasks. Understanding these differences between logistic vs linear regression is crucial for effective model selection and achieving accurate predictions.
Artificial Intelligence (AI) agents have started becoming an integral part of our lives. Imagine asking…
In the ever-evolving landscape of agentic AI workflows and applications, understanding and leveraging design patterns…
In this blog, I aim to provide a comprehensive list of valuable resources for learning…
Have you ever wondered how systems determine whether to grant or deny access, and how…
What revolutionary technologies and industries will define the future of business in 2025? As we…
For data scientists and machine learning researchers, 2024 has been a landmark year in AI…