Deep Learning

Why Deep Learning is called Deep Learning?

In this post, you will learn why deep learning is called as deep learning.

You may recall that deep learning is a subfield of machine learning. One of the key difference between deep learning and machine learning is in the manner the representations / features of data is learnt. In machine learning, the representations of data need to be hand-crafted by the data scientists. In deep learning, the representations of data is learnt automatically as part of learning process.

As a matter of fact, in deep learning, layered representations of data is learnt. The layered representations of data are learnt via models called as neural networks. The diagram below represents the multiple layers using which the representation of number 4 is learnt. The diagram is taken from one of my favorite books, Deep Learning with Python by  Francois Chollet

Fig 1. Deep Learning – Learning Layered Representations of Data

One may note that there are four different successive layers through which data passes before being classified as digit 4. From the above diagram, you may note that the neural network transforms the digit image into representations that are increasingly different from the original image and increasingly informative about the final result. Thus, the model (neural network) learns different representations of data such as those above in order to identify the digit. In modern deep learning models , hundreds of layered representations of data is learnt from the training data. 

If the number of layered representations which need to be learnt are one or two, the learning is called as shallow learning and the model is termed as shallow neural network. In case, the large number of representations need to be learnt, the learning is called as deep learning and the model is called as deep neural network. The deep learning, at times, is also termed as layered representations learning or hierarchical representations learning. 

Ajitesh Kumar

I have been recently working in the area of Data analytics including Data Science and Machine Learning / Deep Learning. I am also passionate about different technologies including programming languages such as Java/JEE, Javascript, Python, R, Julia, etc, and technologies such as Blockchain, mobile computing, cloud-native technologies, application security, cloud computing platforms, big data, etc. I would love to connect with you on Linkedin. Check out my latest book titled as First Principles Thinking: Building winning products using first principles thinking.

Recent Posts

Coefficient of Variation in Regression Modelling: Example

When building a regression model or performing regression analysis to predict a target variable, understanding…

5 days ago

Chunking Strategies for RAG with Examples

If you've built a "Naive" RAG pipeline, you've probably hit a wall. You've indexed your…

2 weeks ago

RAG Pipeline: 6 Steps for Creating Naive RAG App

If you're starting with large language models, you must have heard of RAG (Retrieval-Augmented Generation).…

2 weeks ago

Python: List Comprehension Explained with Examples

If you've spent any time with Python, you've likely heard the term "Pythonic." It refers…

2 weeks ago

Large Language Models (LLMs): Four Critical Modeling Stages

Large language models (LLMs) have fundamentally transformed our digital landscape, powering everything from chatbots and…

3 months ago

Agentic Workflow Design Patterns Explained with Examples

As Large Language Models (LLMs) evolve into autonomous agents, understanding agentic workflow design patterns has…

3 months ago