Deep Learning

Top Deep Learning Myths You should know

This post highlights the top deep learning myths you should know. This is important to understand in order to leverage deep learning to solve complex AI problems. Many times, beginner to intermediate level machine learning enthusiasts don’t consider deep learning based on the myths discussed in this post.

Without further ado, let’s look at the topmost and most common deep learning myths:

  • Good understanding of complex mathematical concepts: Well, that is just a myth. At times, they say that one needs to have a higher degree in Mathematics & statistics. That is not true. With tools and programming languages along with libraries available today, basic mathematical concepts should be able to help you navigate through using deep learning to solve complex problems
  • Great volume of data must be available: This is also a great myth that you need a great volume of data, preferably in GBs to train deep learning models. This is also related to the “Volume” criteria of “Big Data”. That is incorrect. There have been breakthroughs with data of size as less as 100 records or so. In other words, data in MBs can also suffice the need for training good deep learning models.
  • Expensive computers of large configurations (GPUs) are a must: That is not true. You could train deep learning models by procuring costly computers of large sizes.

Given the above, you can get started with deep learning in no time by using some of the following. There are the most popular frameworks which can be used to get started with training your deep learning models. 

You can get started with deep learning by going on one of the following platforms:

Ajitesh Kumar

I have been recently working in the area of Data analytics including Data Science and Machine Learning / Deep Learning. I am also passionate about different technologies including programming languages such as Java/JEE, Javascript, Python, R, Julia, etc, and technologies such as Blockchain, mobile computing, cloud-native technologies, application security, cloud computing platforms, big data, etc. I would love to connect with you on Linkedin. Check out my latest book titled as First Principles Thinking: Building winning products using first principles thinking.

Recent Posts

Retrieval Augmented Generation (RAG) & LLM: Examples

Last updated: 25th Jan, 2025 Have you ever wondered how to seamlessly integrate the vast…

6 days ago

How to Setup MEAN App with LangChain.js

Hey there! As I venture into building agentic MEAN apps with LangChain.js, I wanted to…

2 weeks ago

Build AI Chatbots for SAAS Using LLMs, RAG, Multi-Agent Frameworks

Software-as-a-Service (SaaS) providers have long relied on traditional chatbot solutions like AWS Lex and Google…

2 weeks ago

Creating a RAG Application Using LangGraph: Example Code

Retrieval-Augmented Generation (RAG) is an innovative generative AI method that combines retrieval-based search with large…

3 weeks ago

Building a RAG Application with LangChain: Example Code

The combination of Retrieval-Augmented Generation (RAG) and powerful language models enables the development of sophisticated…

3 weeks ago

Building an OpenAI Chatbot with LangChain

Have you ever wondered how to use OpenAI APIs to create custom chatbots? With advancements…

3 weeks ago