Deep Learning

Top Deep Learning Myths You should know

This post highlights the top deep learning myths you should know. This is important to understand in order to leverage deep learning to solve complex AI problems. Many times, beginner to intermediate level machine learning enthusiasts don’t consider deep learning based on the myths discussed in this post.

Without further ado, let’s look at the topmost and most common deep learning myths:

  • Good understanding of complex mathematical concepts: Well, that is just a myth. At times, they say that one needs to have a higher degree in Mathematics & statistics. That is not true. With tools and programming languages along with libraries available today, basic mathematical concepts should be able to help you navigate through using deep learning to solve complex problems
  • Great volume of data must be available: This is also a great myth that you need a great volume of data, preferably in GBs to train deep learning models. This is also related to the “Volume” criteria of “Big Data”. That is incorrect. There have been breakthroughs with data of size as less as 100 records or so. In other words, data in MBs can also suffice the need for training good deep learning models.
  • Expensive computers of large configurations (GPUs) are a must: That is not true. You could train deep learning models by procuring costly computers of large sizes.

Given the above, you can get started with deep learning in no time by using some of the following. There are the most popular frameworks which can be used to get started with training your deep learning models. 

You can get started with deep learning by going on one of the following platforms:

Ajitesh Kumar

I have been recently working in the area of Data analytics including Data Science and Machine Learning / Deep Learning. I am also passionate about different technologies including programming languages such as Java/JEE, Javascript, Python, R, Julia, etc, and technologies such as Blockchain, mobile computing, cloud-native technologies, application security, cloud computing platforms, big data, etc. I would love to connect with you on Linkedin. Check out my latest book titled as First Principles Thinking: Building winning products using first principles thinking.

Recent Posts

Agentic Reasoning Design Patterns in AI: Examples

In recent years, artificial intelligence (AI) has evolved to include more sophisticated and capable agents,…

2 months ago

LLMs for Adaptive Learning & Personalized Education

Adaptive learning helps in tailoring learning experiences to fit the unique needs of each student.…

2 months ago

Sparse Mixture of Experts (MoE) Models: Examples

With the increasing demand for more powerful machine learning (ML) systems that can handle diverse…

2 months ago

Anxiety Disorder Detection & Machine Learning Techniques

Anxiety is a common mental health condition that affects millions of people around the world.…

2 months ago

Confounder Features & Machine Learning Models: Examples

In machine learning, confounder features or variables can significantly affect the accuracy and validity of…

3 months ago

Credit Card Fraud Detection & Machine Learning

Last updated: 26 Sept, 2024 Credit card fraud detection is a major concern for credit…

3 months ago