Why is QA needed for Machine Learning Models?

Given that the machine learning models are also a kind of conventional software application, the quality assurance principles applied to the conventional software development would or should also apply to build the machine learning models. In this post, you would learn about some of the important reasons as to why Quality Assurance (QA)is important to make sure that the machine learning models of only high quality are deployed in the production. Given that the machine learning models are said to be non-testable, it presents a set of challenges to do the quality control checks or perform testing of machine learning models from a quality assurance perspective. In this relation, I have been posting several other articles on doing Quality Assurance of machine learning models. Please feel free to go through some of these articles. Feel free to suggest or share your thoughts in this relation.

The following represents the different aspects of building machine learning (ML) models which need to be looked at when doing quality assurance testing:

  • Data
  • Features
  • ML models
  • ML pipeline


Key Reasons why QA is needed for Machine Learning Models


The following are some of the reasons why Quality Assurance (QA) would be required for performing quality control checks on machine learning models:

Fig 1. QA for Machine Learning Models

  • Model Performance: Make sure that the overall performance of the model stays within the acceptable limits. For example, if the model performance at the time of deployment is 90% and the acceptable accuracy limits set by product management team is no less than 87%, the quality assurance team would check and ensure that the accuracy remains more than 87% and raise a flag in issue tracking system when finding otherwise.
  • Model Trustability: Make sure that the model predictions are reliable or trustable enough; this is, in fact, one of the most important reasons why quality assurance will be needed to make sure machine learning models of an only high quality stay deployed in the production. This is more so important when the model is mission critical. For example, in healthcare or financial domain, every prediction is important and thus, there should be some way to check the trustability of every prediction.
  • Solution/Model Reliability: Make sure the model is reliable in the sense that in case the model performance starts decreasing and fall below acceptable limits, an alternate model with higher accuracy is deployed in no time. Alternatively, the solution rolls back to pure heuristics based solution/model (rules) in case there are no alternate ML models.
  • Model Efficiency: Make sure that the model is efficient enough from the perspective of execution time and the resources used for each execution.
  • Model Fairness: Make sure that the model is fair enough by doing an analysis of the bias and variance. Ideally, the model should have low bias and low variance. The same needs to be tested across different samples taken from QA perspectives.
  • Model Portability: Make sure that the model is easily installable and deployable in the production. In addition, the model should be able to be rolled back in an easy manner in case of issues such as degradation of model performance.
  • Model Staleness: Make sure that the models which are deployed in the production are not stale. This may occur when data scientists fail to update the model in relation to algorithms or features and model performance starts deteriorating.
  • Data Quality: Make sure that the models are not trained with adversary data set. This is also termed as data poisoning attack. This would require the analysis of data at regular intervals.
  • Data/Features Compliance: Make make sure that the data used for building the features comply with the business rules and regulations. Many a time, the data prohibited for use in building models are not used. However, the derived features as a result of feature engineering could result in usage of prohibited data. And, this would need to be checked by the QA team.
  • Features Importance: Make sure that the features which are used to build the models deployed in the production are still relevant or important enough. In case the feature importance has changed, raise the alert or defect in the bug system.
  • Features Correlation Analysis: Make sure that only relevant features have been used to build the models by making use of univariate, bivariate and multivariate exploratory data analysis techniques.

References


You may want to check related posts such as the following in relation to testing machine learning models from QA perspective:


Summary


In this post, you learned about the need for setting up a quality assurance process for performing quality control checks on machine learning models and certify of suitable enough to be moved into the production. Out of all, the most important reasons why QA is needed for machine learning models is to ensure that the trustability of the model is high or beyond an acceptable limit. Feel free to comment or suggest or share your thoughts.

Ajitesh Kumar

I have been recently working in the area of Data analytics including Data Science and Machine Learning / Deep Learning. I am also passionate about different technologies including programming languages such as Java/JEE, Javascript, Python, R, Julia, etc, and technologies such as Blockchain, mobile computing, cloud-native technologies, application security, cloud computing platforms, big data, etc. I would love to connect with you on Linkedin. Check out my latest book titled as First Principles Thinking: Building winning products using first principles thinking.

Recent Posts

Agentic Reasoning Design Patterns in AI: Examples

In recent years, artificial intelligence (AI) has evolved to include more sophisticated and capable agents,…

2 months ago

LLMs for Adaptive Learning & Personalized Education

Adaptive learning helps in tailoring learning experiences to fit the unique needs of each student.…

3 months ago

Sparse Mixture of Experts (MoE) Models: Examples

With the increasing demand for more powerful machine learning (ML) systems that can handle diverse…

3 months ago

Anxiety Disorder Detection & Machine Learning Techniques

Anxiety is a common mental health condition that affects millions of people around the world.…

3 months ago

Confounder Features & Machine Learning Models: Examples

In machine learning, confounder features or variables can significantly affect the accuracy and validity of…

3 months ago

Credit Card Fraud Detection & Machine Learning

Last updated: 26 Sept, 2024 Credit card fraud detection is a major concern for credit…

3 months ago