In this post, you will learn about the concepts of Perceptron with the help of Python example. It is very important for data scientists to understand the concepts related to Perceptron as a good understanding lays the foundation of learning advanced concepts of neural networks including deep neural networks (deep learning).
Perceptron is a machine learning algorithm which mimics how a neuron in the brain works. It is also called as single layer neural network consisting of a single neuron. The output of this neural network is decided based on the outcome of just one activation function associated with the single neuron. In perceptron, the forward propagation of information happens. Deep neural network consists of one or more perceptrons laid out in two or more layers. Input to different perceptrons in a particular layer will be fed from previous layer by combining them with different weights.
Let’s first understand how a neuron works. The diagram below represents a neuron in the brain. The input signals (x1, x2, …) of different strength (observed weights, w1, w2 …) is fed into the neuron cell as weighted sum via dendrites. The weighted sum is termed as the net input. The net input is processed by the neuron and output signal (observer signal in AXON) is appropriately fired. In case the combined signal strength is not appropriate based on decision function within neuron cell (observe activation function), the neuron does not fire any output signal.
The following is an another view of understanding an artificial neuron, a perceptron, in relation to a biological neuron from the viewpoint of how input and output signals flows:
The perceptron when represented as line diagram would look like the following with mathematical notations:
Pay attention to some of the following in relation to what’s shown in the above diagram representing a neuron:
Pay attention to some of the following in above equation vis-a-vis Perceptron learning algorithm:
Here is another picture of Perceptron that represents the concept explained above.
In this section, we will look each of the steps described in previous section and understand the implementation with the Python code:
'''
Net Input is sum of weighted input signals
'''
def net_input(self, X):
weighted_sum = np.dot(X, self.coef_[1:]) + self.coef_[0]
return weighted_sum
'''
Activation function is fed the net input and the unit step function is executed to determine the output.
'''
def activation_function(self, X):
weighted_sum = self.net_input(X)
return np.where(weighted_sum >= 0.0, 1, 0)
'''
Prediction is made on the basis of output of activation function
'''
def predict(self, X):
return self.activation_function(X)
'''
Stochastic Gradient Descent
1. Weights are updated based on each training examples.
2. Learning of weights can continue for multiple iterations
3. Learning rate needs to be defined
'''
def fit(self, X, y):
rgen = np.random.RandomState(self.random_state)
self.coef_ = rgen.normal(loc=0.0, scale=0.01, size=1 + X.shape[1])
for _ in range(self.n_iterations):
for xi, expected_value in zip(X, y):
predicted_value = self.predict(xi)
self.coef_[1:] = self.coef_[1:] + self.learning_rate * (expected_value - predicted_value) * xi
self.coef_[0] = self.coef_[0] + self.learning_rate * (expected_value - predicted_value) * 1
Here is how the entire Python code for Perceptron implementation would look like. This implementation is used to train the binary classification model that could be used to classify the data in one of the binary classes. Pay attention to all the methods that are explained previously. Also, pay attention to the score method which is used to measure the accuracy of the model.
import numpy as np
#
# Perceptron implementation
#
class CustomPerceptron(object):
def __init__(self, n_iterations=100, random_state=1, learning_rate=0.01):
self.n_iterations = n_iterations
self.random_state = random_state
self.learning_rate = learning_rate
'''
Stochastic Gradient Descent
1. Weights are updated based on each training examples.
2. Learning of weights can continue for multiple iterations
3. Learning rate needs to be defined
'''
def fit(self, X, y):
rgen = np.random.RandomState(self.random_state)
self.coef_ = rgen.normal(loc=0.0, scale=0.01, size=1 + X.shape[1])
self.errors_ = []
for _ in range(self.n_iterations):
errors = 0
for xi, expected_value in zip(X, y):
predicted_value = self.predict(xi)
self.coef_[1:] = self.coef_[1:] + self.learning_rate * (expected_value - predicted_value) * xi
self.coef_[0] = self.coef_[0] + self.learning_rate * (expected_value - predicted_value) * 1
update = self.learning_rate * (expected_value - predicted_value)
errors += int(update != 0.0)
self.errors_.append(errors)
'''
Net Input is sum of weighted input signals
'''
def net_input(self, X):
weighted_sum = np.dot(X, self.coef_[1:]) + self.coef_[0]
return weighted_sum
'''
Activation function is fed the net input and the unit step function
is executed to determine the output.
'''
def activation_function(self, X):
weighted_sum = self.net_input(X)
return np.where(weighted_sum >= 0.0, 1, 0)
'''
Prediction is made on the basis of output of activation function
'''
def predict(self, X):
return self.activation_function(X)
'''
Model score is calculated based on comparison of
expected value and predicted value
'''
def score(self, X, y):
misclassified_data_count = 0
for xi, target in zip(X, y):
output = self.predict(xi)
if(target != output):
misclassified_data_count += 1
total_data_count = len(X)
self.score_ = (total_data_count - misclassified_data_count)/total_data_count
return self.score_
Here is the Python code which could be used to train the model using CustomPerceptron algorithm shown above. Note that SKlean breast cancer data is used for training the model in order to classify / predict the breast cancer.
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
#
# Load the data set
#
bc = datasets.load_breast_cancer()
X = bc.data
y = bc.target
#
# Create training and test split
#
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42, stratify=y)
#
# Instantiate CustomPerceptron
#
prcptrn = CustomPerceptron(n_iterations=10)
#
# Fit the model
#
prcptrn.fit(X_train, y_train)
#
# Score the model
#
prcptrn.score(X_test, y_test), prcptrn.score(X_train, y_train)
Executing the above code will print the accuracy score with test and training data set. (0.8888888888888888, 0.9120603015075377
The code below plots the error vs Epochs. Epoch is a machine learning term used to describe the point at which a model has seen all of the training data once. Training data is fed into the model during Epochs. The number of Epochs is a hyperparameter that can be tuned to improve model performance. Generally, more Epochs will result in better performance, but at the expense of longer training time. When working with large datasets, it is common to run for hundreds or even thousands of Epochs. However, it is important to monitor the model closely to ensure that it is not overfitting the training data.
%matplotlib inline
import matplotlib.pyplot as plt
plt.plot(range(1, len(prcptrn.errors_) + 1), prcptrn.errors_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('Number of updates')
# plt.savefig('images/02_07.png', dpi=300)
plt.show()
The following plot representing errors vs Epochs will be printed.
The following Python code represents usage of Perceptron classifier from Sklearn.linear_model package.
from sklearn import datasets
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Perceptron
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score
iris = datasets.load_iris()
X = iris.data[:, [2, 3]]
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=1, stratify=y)
sc = StandardScaler()
sc.fit(X_train)
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)
ppn = Perceptron(eta0=0.1, random_state=1)
ppn.fit(X_train_std, y_train)
y_pred = ppn.predict(X_test_std)
print('Accuracy: %.3f' % accuracy_score(y_test, y_pred))
print('Accuracy: %.3f' % ppn.score(X_test_std, y_test))
Here is the summary of what you learned about the Perceptron algorithm with help of Python implementation:
Artificial Intelligence (AI) agents have started becoming an integral part of our lives. Imagine asking…
In the ever-evolving landscape of agentic AI workflows and applications, understanding and leveraging design patterns…
In this blog, I aim to provide a comprehensive list of valuable resources for learning…
Have you ever wondered how systems determine whether to grant or deny access, and how…
What revolutionary technologies and industries will define the future of business in 2025? As we…
For data scientists and machine learning researchers, 2024 has been a landmark year in AI…
View Comments
Muy buenos