MIT OCW Machine Learning Courses Information

In this post, you get the information related to MIT OCW machine learning course from MIT OpencourseWare (OCW). They use  Matlab as the primary programming environment. The documentation for Matlab could be found on this page, Matlab Documentation.  The course is provided by Electrical Engineering and Computer Science department.

Other related courses which could be useful for data scientist / machine learning engineers are some of the following:

Lecture Notes – Machine Learning Course

Lecture notes could be found on the following topics:

  • Introduction, linear classification, perceptron update rule (PDF)
  • Perceptron convergence, generalization (PDF)
  • Maximum margin classification (PDF)
  • Classification errors, regularization, logistic regression (PDF)
  • Linear regression, estimator bias and variance, active learning (PDF)
  • Active learning (cont.), non-linear predictions, kernals (PDF)
  • Kernal regression, kernels (PDF)
  • Support vector machine (SVM) and kernels, kernel optimization (PDF)
  • Model selection (PDF)
  • Model selection criteria (PDF)
  • Description length, feature selection (PDF)
  • Combining classifiers, boosting (PDF)
  • Boosting, margin, and complexity (PDF)
  • Margin and generalization, mixture models (PDF)
  • Mixtures and the expectation maximization (EM) algorithm (PDF)
  • EM, regularization, clustering (PDF)
  • Clustering (PDF)
  • Spectral clustering, Markov models (PDF)
  • Hidden Markov models (HMMs) (PDF)
  • HMMs (cont.) (PDF)
  • Bayesian networks (PDF)
  • Learning Bayesian networks (PDF)
  • Guest lecture on collaborative filtering (PDF)

The instructors for the course (currently) are the following:

Download Machine Learning Course Materials

The entire course material can be downloaded from this page (Download Course Materials). This is the direct download link.

Summary

In this post, you got the information about three different MIT OCW machine learning courses which could be useful for machine learning engineers/ data scientists. These courses are machine learning, introduction to probability, introduction to computational thinking and data science. All of the course materials (video lectures and lecture notes) are free for download and you could get started with self-paced learning anytime, anywhere.

 

 

Ajitesh Kumar

I have been recently working in the area of Data analytics including Data Science and Machine Learning / Deep Learning. I am also passionate about different technologies including programming languages such as Java/JEE, Javascript, Python, R, Julia, etc, and technologies such as Blockchain, mobile computing, cloud-native technologies, application security, cloud computing platforms, big data, etc. I would love to connect with you on Linkedin. Check out my latest book titled as First Principles Thinking: Building winning products using first principles thinking.

Recent Posts

Agentic Reasoning Design Patterns in AI: Examples

In recent years, artificial intelligence (AI) has evolved to include more sophisticated and capable agents,…

2 months ago

LLMs for Adaptive Learning & Personalized Education

Adaptive learning helps in tailoring learning experiences to fit the unique needs of each student.…

2 months ago

Sparse Mixture of Experts (MoE) Models: Examples

With the increasing demand for more powerful machine learning (ML) systems that can handle diverse…

2 months ago

Anxiety Disorder Detection & Machine Learning Techniques

Anxiety is a common mental health condition that affects millions of people around the world.…

2 months ago

Confounder Features & Machine Learning Models: Examples

In machine learning, confounder features or variables can significantly affect the accuracy and validity of…

2 months ago

Credit Card Fraud Detection & Machine Learning

Last updated: 26 Sept, 2024 Credit card fraud detection is a major concern for credit…

2 months ago