This post represents my thoughts on why you should take the Google Machine Learning (ML) Crash Course. Most importantly, this course would benefit both the beginners and also the intermediate level data scientists/machine learning researchers. Each of the topics is covered as with videos, reading text and programming exercises. You learn some of the following as part of doing the course:
The ML concepts cover almost all important topics which would help one refresh ML concepts:
Here is a diagram obtained from one of the pages which represent clarity on ML model training, validation and test data split:
The following are different topics which are covered as part of ML engineering concepts:
The following diagram represents the above:
This acts as an icing on the cake. The following are some of the examples covered in this section:
In this post, you learned about details covered in the Google Machine Learning Crash course. To summarize, you would be able to learn ML concepts, ML engineering topics (data dependencies, static vs dynamic training and inferences) and some real-world examples such as cancer prediction etc.
In recent years, artificial intelligence (AI) has evolved to include more sophisticated and capable agents,…
Adaptive learning helps in tailoring learning experiences to fit the unique needs of each student.…
With the increasing demand for more powerful machine learning (ML) systems that can handle diverse…
Anxiety is a common mental health condition that affects millions of people around the world.…
In machine learning, confounder features or variables can significantly affect the accuracy and validity of…
Last updated: 26 Sept, 2024 Credit card fraud detection is a major concern for credit…