Machine Learning

Deep Learning – Learning Feature Representations

In this post, you learn about what is deep learning with a focus on feature engineering.

Here is a quick diagram which represents the idea behind deep learning that Deep learning is about learning features in an automatic manner while optimizing the algorithm.

Fig 1. Deep Learning is about learning feature representations

The above diagram is taken from the book, Deep learning with Pytorch. One could learn one of the key differences between training models using machine learning and deep learning algorithms.

With machine learning models, one need to engineer features (called as feature engineering) from the data (also called as representations) and feed these features in machine learning algorithms to train one or more models. The model performance depends on how good the features are. The focus of data scientists while working on machine learning models is to hand-craft some real good features and use most suitable algorithms to come up with high-performance models. The same is represented on the left side of the diagram.

With deep learning models, all one would need is feed data with some initial features / knowledge into deep learning algorithm and the model learns the features (representations) from raw data based on optimizing algorithms. The focus of deep learning practitioners is mostly on operating on a mathematical entity so that it discovers representations (features) from the training data autonomously. The same is represented on the right side of the diagram.

One of the most important reasons why deep learning took off instantly is that it completely automates what used to be the most crucial step in a machine-learning workflow: feature engineering

Ajitesh Kumar

I have been recently working in the area of Data analytics including Data Science and Machine Learning / Deep Learning. I am also passionate about different technologies including programming languages such as Java/JEE, Javascript, Python, R, Julia, etc, and technologies such as Blockchain, mobile computing, cloud-native technologies, application security, cloud computing platforms, big data, etc. I would love to connect with you on Linkedin. Check out my latest book titled as First Principles Thinking: Building winning products using first principles thinking.

Recent Posts

Agentic Reasoning Design Patterns in AI: Examples

In recent years, artificial intelligence (AI) has evolved to include more sophisticated and capable agents,…

1 month ago

LLMs for Adaptive Learning & Personalized Education

Adaptive learning helps in tailoring learning experiences to fit the unique needs of each student.…

2 months ago

Sparse Mixture of Experts (MoE) Models: Examples

With the increasing demand for more powerful machine learning (ML) systems that can handle diverse…

2 months ago

Anxiety Disorder Detection & Machine Learning Techniques

Anxiety is a common mental health condition that affects millions of people around the world.…

2 months ago

Confounder Features & Machine Learning Models: Examples

In machine learning, confounder features or variables can significantly affect the accuracy and validity of…

2 months ago

Credit Card Fraud Detection & Machine Learning

Last updated: 26 Sept, 2024 Credit card fraud detection is a major concern for credit…

2 months ago