In this post, you will learn about when to go for training deep learning models from the perspective of model performance and volume of data. As a machine learning engineer or data scientist, it always bothers as to can we use deep learning models in place of traditional machine learning models trained using algorithms such as logistic regression, SVM, tree-based algorithms, etc. The objective of this post is to provide you with perspectives on when to go for traditional machine learning models vs deep learning models.
The two key criteria based on which one can decide whether to go for deep learning vs traditional machine learning models are the following:
The following are different classes of algorithms that have been considered in this post for training the models:
Here is the diagram which you would want to get a good grip on when deciding between traditional machine learning vs deep learning models. This is a plot representing model performance vs the amount of data. Different curves represent different classes of models.
Let’s try and understand the above plot in relation to making a selection of which class of models to train.
In recent years, artificial intelligence (AI) has evolved to include more sophisticated and capable agents,…
Adaptive learning helps in tailoring learning experiences to fit the unique needs of each student.…
With the increasing demand for more powerful machine learning (ML) systems that can handle diverse…
Anxiety is a common mental health condition that affects millions of people around the world.…
In machine learning, confounder features or variables can significantly affect the accuracy and validity of…
Last updated: 26 Sept, 2024 Credit card fraud detection is a major concern for credit…