Do you know where your business is spending its money? And more importantly, do you know where your business SHOULD be spending its money? Many businesses don’t have a good handle on their tail spend – the money that’s spent on things that are not essential to the core operations of the company. Tail spend can be difficult to track and manage, but with the help of spend analytics tools and machine learning, it’s becoming easier than ever before. In this blog post, we’ll discuss what tail spend is, how to track it, and how to use analytics and machine learning to make better decisions about where to allocate your resources.
Tail spend is the percentage of total procurement spend that is incurred on low-value, ad-hoc purchases. It can as well be defined as the cumulative spend of an organization on all suppliers that fall outside of the core group of strategic suppliers (below a specific spend threshold). Different organizations have different spend thresholds below which any spend is termed as tail spend. For example, lets say the procurement threshold is $25K, than, any spend below $25K can be termed as tail spend. While tail spend only represents a small portion of total spend, it can have a significant impact on an organization’s bottom line. The picture below represents tail spend:
Tail spend often results in higher spend and longer lead times, as well as increased risk due to the lack of contracts in place. As a result, tracking tail spend and using tail spend analytics can help organizations to optimize their procurement processes and improve their bottom line. When it comes to managing tail spend, visibility is key. By tracking tail spend, organizations can gain insights into where and how they are incurring costs, as well as identify opportunities for optimization. Tail spend analytics can provide valuable insights into organizational spending patterns, helping to create a more efficient and effective procurement strategy.
Tail spend management can be a challenge for procurement professionals for a number of reasons.
The following are some tail spend management use cases which can be solved using machine learning / AI:
Tail spend management is a challenge for procurement professionals for a number of reasons. Tail spend can account for a significant percentage of total spend, but it is often spread across many different suppliers across different business divisions / units. This can make it difficult to get a clear picture of where tail spend is going and to negotiate better terms with suppliers. Tail spend is often made up of low-value items or one-time purchases, which are difficult to track and can make it challenging to justify the time and resources needed to manage it effectively. This can make it difficult to negotiate discounts with suppliers or to take advantage of volume discounts. In this blog, we looked at some of the key challenges associated with tail spend management and how machine learning can be used to overcome these challenges. We also looked at some specific use cases where machine learning can be used to improve tail spend management.
What are your thoughts on using analytics / machine learning for tail spend management? Have you tried it in your organization? Let me know in the comments below.
We’ve all been in that meeting. The dashboard on the boardroom screen is a sea…
When building a regression model or performing regression analysis to predict a target variable, understanding…
If you've built a "Naive" RAG pipeline, you've probably hit a wall. You've indexed your…
If you're starting with large language models, you must have heard of RAG (Retrieval-Augmented Generation).…
If you've spent any time with Python, you've likely heard the term "Pythonic." It refers…
Large language models (LLMs) have fundamentally transformed our digital landscape, powering everything from chatbots and…
View Comments
Very informative and well-articulated post. Thank you