Analytics Journey - Things to Keep in Mind
This post highlights some of the key points to keep in mind when you are starting on data analytics journey. You may want to check a related post to assess where does your organization stand in terms of maturity of analytics practice – Analytics maturity model for assessing analytics practice.
In the post sighted above, the analytics maturity model defines three different levels of maturity which are as following:
At whichever level you are in terms of maturity of your analytics practice, it may be good idea to understand the following points to come up with data analytics projects. Believe that a lot of prior work is required to be done before starting on the analytics projects. The fact that a large volume of data is available is not enough to assure success with data analytics projects. The picture below represents the kind of homework which needs to be done prior to starting on analytics projects.
Here are the key points to keep in mind before starting on analytics projects, in particular, and analytics initiatives at large.
Last updated: 25th Jan, 2025 Have you ever wondered how to seamlessly integrate the vast…
Hey there! As I venture into building agentic MEAN apps with LangChain.js, I wanted to…
Software-as-a-Service (SaaS) providers have long relied on traditional chatbot solutions like AWS Lex and Google…
Retrieval-Augmented Generation (RAG) is an innovative generative AI method that combines retrieval-based search with large…
The combination of Retrieval-Augmented Generation (RAG) and powerful language models enables the development of sophisticated…
Have you ever wondered how to use OpenAI APIs to create custom chatbots? With advancements…