# Read the data from a file; The command below assumes that the working
# directory has already been set. One could set working directory using
# setwd() command.
sample_df <- read.csv("glass.data", header=TRUE, stringsAsFactors=FALSE)
# get a vector comprising of all indices starting from 1 and ending with row number
index <- 1:nrow(sample_df)
# Get random indices of size n from index vector; In command below, the
# size n is determined using trunc(length(index))/3
randindex <- sample(index, trunc(length(index))/3)
# Get the training set consisting of all the items except one represented using
# randindex
trainset <- sample_df[-randindex,]
# Get the test set represented using random index
testset <- sample_df[randindex,]
Artificial Intelligence (AI) agents have started becoming an integral part of our lives. Imagine asking…
In the ever-evolving landscape of agentic AI workflows and applications, understanding and leveraging design patterns…
In this blog, I aim to provide a comprehensive list of valuable resources for learning…
Have you ever wondered how systems determine whether to grant or deny access, and how…
What revolutionary technologies and industries will define the future of business in 2025? As we…
For data scientists and machine learning researchers, 2024 has been a landmark year in AI…