data frame concatenation by columns
Quick code sample on how to concatenate the data frames columns. We will work with example of Boston dataset found with sklearn.datasets. One should note that data frames could be concatenated by rows and columns. In this post, you will learn about how to concatenate data frames by columns.
Here is the code for working with Boston datasets. First and foremost, the Boston dataset will be loaded.
from sklearn.datasets import load_boston bd = load_boston()
Once loaded, let’s create different different data frames comprising of data and target variable.
df_x = pd.DataFrame(data=bd.data, columns=bd.feature_names) df_y = pd.DataFrame(data=bd.target, columns=["MEDV"])
This above creates two data frames comprising of data (features) and the values of target variable. Here are the snapshots.
Use the following command to concatenate the data frames.
df = pd.concat([df_x, df_y], axis=1)
Here is the resulting data frame from concatenation of two data frames by columns.
When building a regression model or performing regression analysis to predict a target variable, understanding…
If you've built a "Naive" RAG pipeline, you've probably hit a wall. You've indexed your…
If you're starting with large language models, you must have heard of RAG (Retrieval-Augmented Generation).…
If you've spent any time with Python, you've likely heard the term "Pythonic." It refers…
Large language models (LLMs) have fundamentally transformed our digital landscape, powering everything from chatbots and…
As Large Language Models (LLMs) evolve into autonomous agents, understanding agentic workflow design patterns has…