data frame concatenation by columns
Quick code sample on how to concatenate the data frames columns. We will work with example of Boston dataset found with sklearn.datasets. One should note that data frames could be concatenated by rows and columns. In this post, you will learn about how to concatenate data frames by columns.
Here is the code for working with Boston datasets. First and foremost, the Boston dataset will be loaded.
from sklearn.datasets import load_boston bd = load_boston()
Once loaded, let’s create different different data frames comprising of data and target variable.
df_x = pd.DataFrame(data=bd.data, columns=bd.feature_names) df_y = pd.DataFrame(data=bd.target, columns=["MEDV"])
This above creates two data frames comprising of data (features) and the values of target variable. Here are the snapshots.
Use the following command to concatenate the data frames.
df = pd.concat([df_x, df_y], axis=1)
Here is the resulting data frame from concatenation of two data frames by columns.
Last updated: 25th Jan, 2025 Have you ever wondered how to seamlessly integrate the vast…
Hey there! As I venture into building agentic MEAN apps with LangChain.js, I wanted to…
Software-as-a-Service (SaaS) providers have long relied on traditional chatbot solutions like AWS Lex and Google…
Retrieval-Augmented Generation (RAG) is an innovative generative AI method that combines retrieval-based search with large…
The combination of Retrieval-Augmented Generation (RAG) and powerful language models enables the development of sophisticated…
Have you ever wondered how to use OpenAI APIs to create custom chatbots? With advancements…