Last updated: 4th Jan, 2024
In the realm of machine learning, the emphasis increasingly shifts towards solving real-world problems with high-quality models. Creating high performant models does not not just depend on raw computational power or theoretical knowledge, but crucially on the ability to systematically conduct and learn from a myriad of different models by trying with hypothesis and related experiments including different algorithms, datasets / features, hyperparameters, etc. This is where the importance of a robust validation strategy and related techniques becomes paramount.
Validation techniques, in essence, are the methodologies employed to accurately assess a model’s errors and to gauge how its performance fluctuates with different experiments. The primary goal for the high quality model is to generalize well to unseen data, and this is where a good validation strategy truly shines. A good validation strategy is not just about improving current model performance but also about anticipating how models will perform on new, unseen data. A well-thought-out validation approach helps in making informed decisions about which models to trust.
In this post, you will briefly learn about different validation techniques such as following and also presented with practice test having questions and answers which could be used for interviews.
The following are different validation techniques which can be used during training of machine learning models:
In Python, this can be implemented using libraries like scikit-learn. First, the dataset is divided into two sets: a training set and a testing set. This is often done using the train_test_split function from scikit-learn, where you can specify the proportion of data to be used for testing. The model is then trained on the training set using its fit method. After training, the model’s performance is evaluated on the unseen testing set using different types of metrics.
In scikit-learn, the K-fold cross-validation process is facilitated by the KFold class from the model_selection module. This class allows you to specify the number of splits (folds) you want to use. To actually perform the cross-validation, you typically use the cross_val_score function, also from the model_selection module, which takes your model, the entire dataset, and the number of folds as arguments, and returns the evaluation scores for each fold.
This validation method is particularly useful for smaller datasets where maximizing the use of data is crucial. By averaging over ‘k’ trials, k-fold cross-validation also helps in reducing the variability of the performance estimation compared to a single train-test split, leading to a more reliable assessment of the model’s effectiveness. This technique can also be called as a form of Repeated Hold-out Method. The error rate could be improved by using stratification technique. Here is a related post: K-fold cross validation method for machine learning models.
LOOCV method, however, can be computationally intensive, especially for large datasets, as it requires the model to be trained from scratch ‘N’ times. Despite this, the results from LOOCV tend to be less biased and more reliable, especially in cases where every data point’s contribution to the model’s learning is crucial. The following diagram represents the LOOCV validation technique.
The process can be visualized as a cycle where, in each iteration, a new random sample is chosen as the test set, and the model is trained and evaluated on these varying splits. After conducting a predefined number of iterations, the error rates from each iteration are calculated and then averaged to provide an overall error rate for the model.
This averaging is a critical aspect of random subsampling, as it helps in mitigating the impact of any particularly biased or unrepresentative split of the data. By repeatedly shuffling and splitting the dataset, random subsampling offers a more robust estimate of the model’s performance compared to a single split, as it accounts for variability in the dataset. However, it’s important to note that since this method involves multiple rounds of training and validation, it can be computationally more intensive than a single train-test split, especially for larger datasets. Despite this, random subsampling remains a popular choice for model validation due to its simplicity and effectiveness in providing a reliable performance estimate.
[wp_quiz id=”6694″]
Artificial Intelligence (AI) agents have started becoming an integral part of our lives. Imagine asking…
In the ever-evolving landscape of agentic AI workflows and applications, understanding and leveraging design patterns…
In this blog, I aim to provide a comprehensive list of valuable resources for learning…
Have you ever wondered how systems determine whether to grant or deny access, and how…
What revolutionary technologies and industries will define the future of business in 2025? As we…
For data scientists and machine learning researchers, 2024 has been a landmark year in AI…