Categories: Big Data

Machine Learning – When to Use Linear vs Guassian Kernel with SVM

This article represents guidelines which could be used to decide whether to use Linear kernel or Gaussian kernel when working with Support Vector Machine (SVM). Please feel free to comment/suggest if I missed to mention one or more important points. Also, sorry for the typos.

Following are the key points described later in this article:

  • When to Use Linear Kernel
  • When to Use Gaussian Kernel

 

When to Use Linear Kernel

In case there are large number of features and comparatively smaller number of training examples, one would want to use linear kernel. As a matter of fact, it can also be called as SVM with No Kernel. One may recall that SVM with no kernel acts pretty much like logistic regression model where following holds true:

  • Predict Y = 1 when W.X >= 0. Note that, in the prior equation, W is actually W transpose and also includes bias factor.
  • Predict Y = 0 when W.X < 0.

Simply speaking, one may want to use SVM with linear kernel when data distribution is linearly separable.

 

When to Use Gaussian Kernel

In scenarios, where there are smaller number of features and large number of training examples, one may use what is called Gaussian Kernel. When working with Gaussian kernel, one may need to choose the value of variance (sigma square). The selection of variance would determine the bias-variance trade-offs. Higher value of variance would result in High bias, low variance classifier and, lower value of variance would result in low bias/high variance classifier.

 

Ajitesh Kumar

I have been recently working in the area of Data analytics including Data Science and Machine Learning / Deep Learning. I am also passionate about different technologies including programming languages such as Java/JEE, Javascript, Python, R, Julia, etc, and technologies such as Blockchain, mobile computing, cloud-native technologies, application security, cloud computing platforms, big data, etc. I would love to connect with you on Linkedin. Check out my latest book titled as First Principles Thinking: Building winning products using first principles thinking.

Recent Posts

Agentic Reasoning Design Patterns in AI: Examples

In recent years, artificial intelligence (AI) has evolved to include more sophisticated and capable agents,…

2 months ago

LLMs for Adaptive Learning & Personalized Education

Adaptive learning helps in tailoring learning experiences to fit the unique needs of each student.…

3 months ago

Sparse Mixture of Experts (MoE) Models: Examples

With the increasing demand for more powerful machine learning (ML) systems that can handle diverse…

3 months ago

Anxiety Disorder Detection & Machine Learning Techniques

Anxiety is a common mental health condition that affects millions of people around the world.…

3 months ago

Confounder Features & Machine Learning Models: Examples

In machine learning, confounder features or variables can significantly affect the accuracy and validity of…

3 months ago

Credit Card Fraud Detection & Machine Learning

Last updated: 26 Sept, 2024 Credit card fraud detection is a major concern for credit…

3 months ago