In this post, you will learn about the following:
The below is the Logit Function code representing association between the probability that an event will occur and independent features.
$$Logit Function = \log(\frac{P}{(1-P)}) = {w_0} + {w_1}{x_1} + {w_2}{x_2} + …. + {w_n}{x_n}$$
$$Logit Function = \log(\frac{P}{(1-P)}) = W^TX$$
$$P = \frac{1}{1 + e^-W^TX}$$
The above equation can be called as sigmoid function.
import numpy as np import matplotlib.pyplot as plt # Sigmoid function # def sigmoid(z): return 1 / (1 + np.exp(-z)) # Creating sample Z points # z = np.arange(-5, 5, 0.1) # Invoking Sigmoid function on all Z points # phi_z = sigmoid(z) # Plotting the Sigmoid function # plt.plot(z, phi_z) plt.axvline(0.0, color='k') plt.xlabel('z') plt.ylabel('$\phi(z)$') plt.yticks([0.0, 0.5, 1.0]) ax = plt.gca() ax.yaxis.grid(True) plt.tight_layout() plt.show()
Executing the above code would result in the following plot:
Pay attention to some of the following in above plot:
In recent years, artificial intelligence (AI) has evolved to include more sophisticated and capable agents,…
Adaptive learning helps in tailoring learning experiences to fit the unique needs of each student.…
With the increasing demand for more powerful machine learning (ML) systems that can handle diverse…
Anxiety is a common mental health condition that affects millions of people around the world.…
In machine learning, confounder features or variables can significantly affect the accuracy and validity of…
Last updated: 26 Sept, 2024 Credit card fraud detection is a major concern for credit…
View Comments
nice