AI

Logistic Regression: Sigmoid Function Python Code

In this post, you will learn about the following:

  • How to represent the probability that an event will take place with the asssociated features (attributes / independent features)
  • Sigmoid function python code

Probability as Sigmoid Function

The below is the Logit Function code representing association between the probability that an event will occur and independent features.

$$Logit Function = \log(\frac{P}{(1-P)}) = {w_0} + {w_1}{x_1} + {w_2}{x_2} + …. + {w_n}{x_n}$$

$$Logit Function = \log(\frac{P}{(1-P)}) = W^TX$$

$$P = \frac{1}{1 + e^-W^TX}$$

The above equation can be called as sigmoid function.

Python Code for Sigmoid Function

import numpy as np
import matplotlib.pyplot as plt

# Sigmoid function
#
def sigmoid(z):
    return 1 / (1 + np.exp(-z))
# Creating sample Z points
#
z = np.arange(-5, 5, 0.1)

# Invoking Sigmoid function on all Z points
#
phi_z = sigmoid(z)

# Plotting the Sigmoid function
#
plt.plot(z, phi_z)
plt.axvline(0.0, color='k')
plt.xlabel('z')
plt.ylabel('$\phi(z)$')
plt.yticks([0.0, 0.5, 1.0])
ax = plt.gca()
ax.yaxis.grid(True)
plt.tight_layout()
plt.show()


Executing the above code would result in the following plot:

Fig 1: Logistic Regression – Sigmoid Function Plot

Pay attention to some of the following in above plot:

Ajitesh Kumar

I have been recently working in the area of Data analytics including Data Science and Machine Learning / Deep Learning. I am also passionate about different technologies including programming languages such as Java/JEE, Javascript, Python, R, Julia, etc, and technologies such as Blockchain, mobile computing, cloud-native technologies, application security, cloud computing platforms, big data, etc. I would love to connect with you on Linkedin. Check out my latest book titled as First Principles Thinking: Building winning products using first principles thinking.

View Comments

Recent Posts

Agentic Reasoning Design Patterns in AI: Examples

In recent years, artificial intelligence (AI) has evolved to include more sophisticated and capable agents,…

2 months ago

LLMs for Adaptive Learning & Personalized Education

Adaptive learning helps in tailoring learning experiences to fit the unique needs of each student.…

3 months ago

Sparse Mixture of Experts (MoE) Models: Examples

With the increasing demand for more powerful machine learning (ML) systems that can handle diverse…

3 months ago

Anxiety Disorder Detection & Machine Learning Techniques

Anxiety is a common mental health condition that affects millions of people around the world.…

3 months ago

Confounder Features & Machine Learning Models: Examples

In machine learning, confounder features or variables can significantly affect the accuracy and validity of…

3 months ago

Credit Card Fraud Detection & Machine Learning

Last updated: 26 Sept, 2024 Credit card fraud detection is a major concern for credit…

3 months ago