Logistic Regression - Sigmoid Function Plot
In this post, you will learn about the following:
The below is the Logit Function code representing association between the probability that an event will occur and independent features.
$$Logit Function = \log(\frac{P}{(1-P)}) = {w_0} + {w_1}{x_1} + {w_2}{x_2} + …. + {w_n}{x_n}$$
$$Logit Function = \log(\frac{P}{(1-P)}) = W^TX$$
$$P = \frac{1}{1 + e^-W^TX}$$
The above equation can be called as sigmoid function.
import numpy as np import matplotlib.pyplot as plt # Sigmoid function # def sigmoid(z): return 1 / (1 + np.exp(-z)) # Creating sample Z points # z = np.arange(-5, 5, 0.1) # Invoking Sigmoid function on all Z points # phi_z = sigmoid(z) # Plotting the Sigmoid function # plt.plot(z, phi_z) plt.axvline(0.0, color='k') plt.xlabel('z') plt.ylabel('$\phi(z)$') plt.yticks([0.0, 0.5, 1.0]) ax = plt.gca() ax.yaxis.grid(True) plt.tight_layout() plt.show()
Executing the above code would result in the following plot:
Fig 1: Logistic Regression – Sigmoid Function Plot
Pay attention to some of the following in above plot:
Large language models (LLMs) have fundamentally transformed our digital landscape, powering everything from chatbots and…
As Large Language Models (LLMs) evolve into autonomous agents, understanding agentic workflow design patterns has…
In today's data-driven business landscape, organizations are constantly seeking ways to harness the power of…
In this blog, you would get to know the essential mathematical topics you need to…
This blog represents a list of questions you can ask when thinking like a product…
AI agents are autonomous systems combining three core components: a reasoning engine (powered by LLM),…
View Comments
nice