Categories: Big Data

Learn R – How to Fix Read.Table Command Reading Lesser Rows

This article represents the problem statement related with read.table reading fewer or incorrect or lesser number of lines or rows when reading a text file having multiple columns, and the solution to the same. This is going to be a shorter blog. But since it solved a problem on which I spent some time, I chose to write about the same. Please feel free to comment/suggest if I missed to mention one or more important points. Also, sorry for the typos.
Problem Statement: Reading Fewer Lines with read.table Command

I have been learning the naive bayes classification. I downloaded this SMS collection data. I went ahead and tried to load the data using following command. And, it listed around 1630 rows, although there were 5574 rows.

messages <- read.table( file.choose(), sep="\t", stringsAsFactors=FALSE)

I check with commands such as dim(messages) and it gave me 1630 messages with 2 columns. This is lesser (and thus, incorrect) than what existed in the document.

Solution to getting exact number of rows

After investigation, I found that the messages consisted of single/double quotes and this needed to be disabled for read.table to read correct number of rows. I did the same with following command and it worked pretty well. Note the usage quote=” parameter.

messages <- read.table( file.choose(), sep="\t", stringsAsFactors=FALSE, quote='')

 

Ajitesh Kumar

I have been recently working in the area of Data analytics including Data Science and Machine Learning / Deep Learning. I am also passionate about different technologies including programming languages such as Java/JEE, Javascript, Python, R, Julia, etc, and technologies such as Blockchain, mobile computing, cloud-native technologies, application security, cloud computing platforms, big data, etc. I would love to connect with you on Linkedin. Check out my latest book titled as First Principles Thinking: Building winning products using first principles thinking.

Recent Posts

What is Embodied AI? Explained with Examples

Artificial Intelligence (AI) has evolved significantly, from its early days of symbolic reasoning to the…

2 weeks ago

Retrieval Augmented Generation (RAG) & LLM: Examples

Last updated: 25th Jan, 2025 Have you ever wondered how to seamlessly integrate the vast…

3 months ago

How to Setup MEAN App with LangChain.js

Hey there! As I venture into building agentic MEAN apps with LangChain.js, I wanted to…

3 months ago

Build AI Chatbots for SAAS Using LLMs, RAG, Multi-Agent Frameworks

Software-as-a-Service (SaaS) providers have long relied on traditional chatbot solutions like AWS Lex and Google…

3 months ago

Creating a RAG Application Using LangGraph: Example Code

Retrieval-Augmented Generation (RAG) is an innovative generative AI method that combines retrieval-based search with large…

4 months ago

Building a RAG Application with LangChain: Example Code

The combination of Retrieval-Augmented Generation (RAG) and powerful language models enables the development of sophisticated…

4 months ago