Difference between Machine Learning & Traditional Software

In this post, we will understand what are some of the key differences between machine learning models and traditional/conventional software.

S.NoTraditional SoftwareMachine Learning
1In traditional software, the primary objective is to meet functional and non-functional requirements. In machine learning models, the primary goal is to optimize the metric (accuracy, precision/recall, RMSE, etc) of the models. Every 0.1 % improvement in the model metrics could result in significant business value creation.
2The quality of the software primary depends on the quality of the code.The quality of the model depends upon various parameters which are mainly related to the input data and hyperparameters tuning.
3Traditional software is created using one software stack such as MEAN, Java, etc.Machine learning models could be created using different algorithms and associated libraries. Each of these algorithms could result in different performance.

Apart from the above, one of the key aspects of machine learning is that those working on machine learning models need to acquire the sensibilities of a scientist. This is because, with new data, one may require to retrain the model and aim to ensure the same or better performance. This is unlike traditional software development where the change in data does not change/impact the business functionality although new business rules may need to be accommodated.

Here is a great picture which represents the difference between machine learning models and traditional software

Fig. Difference traditional software machine learning
Ajitesh Kumar

I have been recently working in the area of Data analytics including Data Science and Machine Learning / Deep Learning. I am also passionate about different technologies including programming languages such as Java/JEE, Javascript, Python, R, Julia, etc, and technologies such as Blockchain, mobile computing, cloud-native technologies, application security, cloud computing platforms, big data, etc. I would love to connect with you on Linkedin. Check out my latest book titled as First Principles Thinking: Building winning products using first principles thinking.

Recent Posts

Retrieval Augmented Generation (RAG) & LLM: Examples

Last updated: 25th Jan, 2025 Have you ever wondered how to seamlessly integrate the vast…

1 week ago

How to Setup MEAN App with LangChain.js

Hey there! As I venture into building agentic MEAN apps with LangChain.js, I wanted to…

2 weeks ago

Build AI Chatbots for SAAS Using LLMs, RAG, Multi-Agent Frameworks

Software-as-a-Service (SaaS) providers have long relied on traditional chatbot solutions like AWS Lex and Google…

2 weeks ago

Creating a RAG Application Using LangGraph: Example Code

Retrieval-Augmented Generation (RAG) is an innovative generative AI method that combines retrieval-based search with large…

3 weeks ago

Building a RAG Application with LangChain: Example Code

The combination of Retrieval-Augmented Generation (RAG) and powerful language models enables the development of sophisticated…

3 weeks ago

Building an OpenAI Chatbot with LangChain

Have you ever wondered how to use OpenAI APIs to create custom chatbots? With advancements…

3 weeks ago