Data governance is a framework that provides data management governance. It’s the process of structuring data so it can be governed, managed and used more effectively. Data governance framework forms the key aspect of data analytics strategy. This blog post will discuss key functions of a standard data governance framework and can be taken as a template or example to help you get started with setting up your data governance program.
Data governance can be defined as enterprise-wide management of data from availability, usability, security and integrity standpoint. The data governance framework is intended to put some structure around how data can be managed and used in an organization based on well-defined rules and processes around a variety of data related operations and decisions. Data governance framework is important to data-reliant organizations because it provides a structure for data management and usage. Some of the key aspects of data governance includes the following:
Here are four different key components / functions of a data governance framework:
The primary role of data governance is to establish and maintain standards around data. This can be achieved in different manners such as the following:
The second major role of data governance is to establish and maintain accountability for data. Data governance program or framework assigns responsibility for specific data domains to individuals called data stewards. Data stewards are generally accountable for ensuring that their area has the correct definitions and are responsible for the overall state of their data domain. Governance can also help identify who is responsible for addressing various types of data quality issues.
The third key aspect of data governance framework is to help manage the overall process of data development and to communicate changes to the data environment. The following are two key activities:
The fourth major function of the data governance framework is providing information about the data environments to the stakeholders at regular intervals. The key aspect is providing information about data also called as metadata. This process can also be termed as metadata management. Given that we’ve gone through all the trouble of creating standard definitions and calculations, it’s generally useful to formally document them and provide that documentation to the enterprise. Metadata can speak to the what and where of the data environment, but it can also indicate how good the information is. The following represents the key activities of metadata management:
Based on the previous section explaining the key functions of data governance framework, the following can be formed as a template of your data governance framework. You could create one or more excel spreadsheets to capture / track the following:
Data Governance Framework is a data-driven approach to data management. By implementing the framework, data can be managed in an efficient and effective manner without compromising on quality or accuracy. The framework provides for standard definitions of data domains along with access permissions which ensures that user’s needs are met while data security remains intact. Implementing this type of strategy will help you manage your data more effectively and meet organizational needs while avoiding information overload among staff members who use it on a day-to-day basis. For more information about Data Governance Strategies, please feel free to reach out. In the next blog, we will look into how to go about implementing data governance program.
We’ve all been in that meeting. The dashboard on the boardroom screen is a sea…
When building a regression model or performing regression analysis to predict a target variable, understanding…
If you've built a "Naive" RAG pipeline, you've probably hit a wall. You've indexed your…
If you're starting with large language models, you must have heard of RAG (Retrieval-Augmented Generation).…
If you've spent any time with Python, you've likely heard the term "Pythonic." It refers…
Large language models (LLMs) have fundamentally transformed our digital landscape, powering everything from chatbots and…
View Comments
Very practical and concise content. Thanks for sharing.