In this post, you will learn how to convert Sklearn.datasets to Pandas Dataframe. It will be useful to know this technique (code example) if you are comfortable working with Pandas Dataframe. You will be able to perform several operations faster with the dataframe.
Sklearn datasets class comprises of several different types of datasets including some of the following:
The code sample below is demonstrated with IRIS data set. Before looking into the code sample, recall that IRIS dataset when loaded has data in form of “data” and labels present as “target”.
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import datasets
# Load the IRIS dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target
# Create dataframe using iris.data
df = pd.DataFrame(data=iris.data, columns=["sepal_length", "sepal_width", "petal_length", "petal_width"])
# Append class / label data
df["class"] = iris.target
# Print the data and check for yourself
df.head()
Executing the above code will print the following dataframe.
In case, you don’t want to explicitly assign column name, you could use the following commands:
# Create dataframe using iris.data
df = pd.DataFrame(data=iris.data)
# Append class / label data
df["class"] = iris.target
# Print the data and check for yourself
df.head()
In this post, you learned about how to convert the SKLearn dataset to Pandas DataFrame.
Last updated: 25th Jan, 2025 Have you ever wondered how to seamlessly integrate the vast…
Hey there! As I venture into building agentic MEAN apps with LangChain.js, I wanted to…
Software-as-a-Service (SaaS) providers have long relied on traditional chatbot solutions like AWS Lex and Google…
Retrieval-Augmented Generation (RAG) is an innovative generative AI method that combines retrieval-based search with large…
The combination of Retrieval-Augmented Generation (RAG) and powerful language models enables the development of sophisticated…
Have you ever wondered how to use OpenAI APIs to create custom chatbots? With advancements…