Python

How to Convert Sklearn Dataset to Dataframe

In this post, you will learn how to convert Sklearn.datasets to Pandas Dataframe. It will be useful to know this technique (code example) if you are comfortable working with Pandas Dataframe. You will be able to perform several operations faster with the dataframe.

Sklearn datasets class comprises of several different types of datasets including some of the following:

  • Iris
  • Breast cancer
  • Diabetes
  • Boston
  • Linnerud
  • Images

The code sample below is demonstrated with IRIS data set. Before looking into the code sample, recall that IRIS dataset when loaded has data in form of “data” and labels present as “target”.

import pandas as pd
import matplotlib.pyplot as plt
from sklearn import datasets

# Load the IRIS dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

# Create dataframe using iris.data
df = pd.DataFrame(data=iris.data, columns=["sepal_length", "sepal_width", "petal_length", "petal_width"])

# Append class / label data
df["class"] = iris.target

# Print the data and check for yourself
df.head()

Executing the above code will print the following dataframe.

Fig 1. IRIS dataset represented as Pandas dataframe

In case, you don’t want to explicitly assign column name, you could use the following commands:

# Create dataframe using iris.data
df = pd.DataFrame(data=iris.data)

# Append class / label data
df["class"] = iris.target

# Print the data and check for yourself
df.head()

Conclusion

In this post, you learned about how to convert the SKLearn dataset to Pandas DataFrame.

Ajitesh Kumar

I have been recently working in the area of Data analytics including Data Science and Machine Learning / Deep Learning. I am also passionate about different technologies including programming languages such as Java/JEE, Javascript, Python, R, Julia, etc, and technologies such as Blockchain, mobile computing, cloud-native technologies, application security, cloud computing platforms, big data, etc. I would love to connect with you on Linkedin. Check out my latest book titled as First Principles Thinking: Building winning products using first principles thinking.

Recent Posts

Retrieval Augmented Generation (RAG) & LLM: Examples

Last updated: 25th Jan, 2025 Have you ever wondered how to seamlessly integrate the vast…

1 week ago

How to Setup MEAN App with LangChain.js

Hey there! As I venture into building agentic MEAN apps with LangChain.js, I wanted to…

2 weeks ago

Build AI Chatbots for SAAS Using LLMs, RAG, Multi-Agent Frameworks

Software-as-a-Service (SaaS) providers have long relied on traditional chatbot solutions like AWS Lex and Google…

2 weeks ago

Creating a RAG Application Using LangGraph: Example Code

Retrieval-Augmented Generation (RAG) is an innovative generative AI method that combines retrieval-based search with large…

3 weeks ago

Building a RAG Application with LangChain: Example Code

The combination of Retrieval-Augmented Generation (RAG) and powerful language models enables the development of sophisticated…

3 weeks ago

Building an OpenAI Chatbot with LangChain

Have you ever wondered how to use OpenAI APIs to create custom chatbots? With advancements…

3 weeks ago