In this post, you will learn about some of the bias mitigation strategies which could be applied in ML Model Development lifecycle (MDLC) to achieve discrimination-aware machine learning models. The primary objective is to achieve a higher accuracy model while ensuring that the models are lesser discriminant in relation to sensitive/protected attributes. In simple words, the output of the classifier should not correlate with protected or sensitive attributes. Building such ML models becomes the multi-objective optimization problem. The quality of the classifier is measured by its accuracy and the discrimination it makes on the basis of sensitive attributes; the more accurate, the better, and the less discriminant (based on sensitive attributes), the better. The following are some of the bias mitigation strategies:
Here is a diagram representing the bias mitigation strategies for machine learning models:
Pre-processing algorithms are used to mitigate bias prevalent in the training data. The idea is to apply one of the following technique for preprocessing the training data set and then, apply classification algorithms for learning an appropriate classifier.
In this post, you learned about bias mitigation strategies to build higher performing models while making sure that the models are lesser discriminant. The techniques presented in this post will be updated at regular intervals based on ongoing research.
Artificial Intelligence (AI) agents have started becoming an integral part of our lives. Imagine asking…
In the ever-evolving landscape of agentic AI workflows and applications, understanding and leveraging design patterns…
In this blog, I aim to provide a comprehensive list of valuable resources for learning…
Have you ever wondered how systems determine whether to grant or deny access, and how…
What revolutionary technologies and industries will define the future of business in 2025? As we…
For data scientists and machine learning researchers, 2024 has been a landmark year in AI…