In this post, you will learn about different artificial intelligence (AI) use cases of Telemedicine / Telehealth including some of key implementation challenges pertaining to AI / machine learning. In case you are working in the field of data science / machine learning, you may want to go through some of the challenges, primarily AI related, which is thrown in Telemedicine domain due to upsurge in need of reliable Telemedicine services.
Telemedicine is the remote delivery of healthcare services, using digital communication technologies. It has the potential to improve access to healthcare, especially in remote or underserved communities. It can be used for a variety of purposes, including the management of chronic conditions, the provision of mental health services, and the delivery of primary care. Telemedicine has the potential to improve access to care, increase efficiency, and reduce healthcare costs. Telemedicine can be used for a wide range of services, including consultation, diagnosis, and treatment. It can also be used for monitoring and follow-up care. Telemedicine can be delivered via phone, video call, or internet-based applications. The use of digital health technologies in telemedicine is growing, as these technologies offer new ways to improve the quality and efficiency of healthcare delivery. Telemedicine is an important part of the future of healthcare, and its use is expected to continue to grow in the years to come.
The following represents some of the important AI / machine learning use cases for Telemedicine:
Here are the key challenges which need to be addressed to take full advantage of AI, RPA and cloud computing while delivering Telemedicine services:
AI application solution design will be key to decide whether the predictions served by the machine learning models could be used to automate the workflow without doctors’ interference (autonomous AI) or assist the doctors in making the final decisions. Let’s say a deep learning model is used to predict whether a person is suffering from a disease or not. The solution design must include whether the decision making can be automated or whether doctors are still asked to take the final decision based on the prediction.
Given that doctors would like to know the values of attributes based on which predictions are made. This will require AI model based solution design to make a trade-off between whether to use complex algorithm whose predictions are accurate but explainability (prediction attributes) is not possible or use algorithm with lesser model performance but predictions explainability is possible.
Apart from explainability at individual prediction level, AI Explainability also includes selection of appropriate metrics which represent the model performance vis-a-vis solution outcomes.
Ethical AI challenges include some of the following to be considered when doing Telemedicine AI application solution design:
Given the need to have models which are highly performant at all point in time, there is required strong AI governance practices to be put in place including some of the following:
Data preparation is going to be key when building models to meet telemedicine requirements. This includes some of the following aspects:
Data security is going to be one of the most important challenges when building models for healthcare requirements. Patients data are critical and there are compliances and regulations in place for safety of patients data. Some of the following data security controls would need to be put in place:
One of the key compliance related issue when dealing with machine learning models is change-control. When new models are ready to be moved into production, as per compliance / regulation requirements, several aspects of change would need to be documented and approved by change / risk control board. And, doing this for machine learning models would become tricky as they are different beast than the regular software development.
Finally, in order to meet telemedicine requirements, one would need to adopt cloud-native design of telemedicine applications to support the need to have parts of application deployed in cloud and other part deployed on-premise. The idea is that the solution design need to support hybrid-cloud architecture for both applications and data.
In recent years, artificial intelligence (AI) has evolved to include more sophisticated and capable agents,…
Adaptive learning helps in tailoring learning experiences to fit the unique needs of each student.…
With the increasing demand for more powerful machine learning (ML) systems that can handle diverse…
Anxiety is a common mental health condition that affects millions of people around the world.…
In machine learning, confounder features or variables can significantly affect the accuracy and validity of…
Last updated: 26 Sept, 2024 Credit card fraud detection is a major concern for credit…