In this post, you will learn about when to use LabelEncoder. As a data scientist, you must have a clear understanding on when to use LabelEncoder and when to use other encoders such as One-hot Encoder. Using appropriate type of encoders is key part of data preprocessing in machine learning model building lifecycle.
Here are some of the scenarios when you could use LabelEncoder without having impact on model.
Here is the Python code which transforms the label binary classes into encoding 0 and 1 using LabelEncoder. The Breast Cancer Wisconsin dataset is used for illustration purpose. The information about this dataset can be found at https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic). Note that LabelEncoder is class of sklearn.preprocessing package.
import pandas as pd
from sklearn.preprocessing import LabelEncoder
df = pd.read_csv(
'https://archive.ics.uci.edu/ml/'
'machine-learning-databases'
'/breast-cancer-wisconsin/wdbc.data',
header=None)
#
# Load the training data (X) and labels (y)
#
X = df.loc[:, 2:].values
y = df.loc[:, 1].values
#
# Instantiate LabelEncoder
#
le = LabelEncoder()
y = le.fit_transform(y)
Here is the how the data looks like:
In case, you want to look at what all classes got transformed. You can use the following code representing attribute, classes_ on instance of LabelEncoder.
le.classes_
Read one related post on LabelEncoder – LabelEncoder example – single & multiple columns
Large language models (LLMs) have fundamentally transformed our digital landscape, powering everything from chatbots and…
As Large Language Models (LLMs) evolve into autonomous agents, understanding agentic workflow design patterns has…
In today's data-driven business landscape, organizations are constantly seeking ways to harness the power of…
In this blog, you would get to know the essential mathematical topics you need to…
This blog represents a list of questions you can ask when thinking like a product…
AI agents are autonomous systems combining three core components: a reasoning engine (powered by LLM),…