Following are different usecases in relation with energy management where machine learning could be used for probabilistic energy forecasting. For those who are new to probabilistic forecasting, here is the definition from Wikipedia: Probabilistic forecasting summarises what is known, or opinions about, future events. In contrast to a single-valued forecasts (such as forecasting that the maximum temperature at given site on a given day will be 23 degrees Celsius or that the result in a given football match will be a no-score draw), probabilistic forecasts assign a probability to each of a number of different outcomes, and the complete set of probabilities represents a probability forecast. In simpler words, the idea behind forecasting is to predict about future events. Some of the other areas apart from energy forecasting where probabilistic forecasting is used are weather forecasting, sprots betting etc.
Following are different machine learning algorithms that could be applied for doing data mining or forecasting for energy-related usecases.
One could find some real great blogs on A blog by Dr. Tao Hong. There are several informative and thought proviking articles out there. I am glad that I found this blog. Worth a check out.
In recent years, artificial intelligence (AI) has evolved to include more sophisticated and capable agents,…
Adaptive learning helps in tailoring learning experiences to fit the unique needs of each student.…
With the increasing demand for more powerful machine learning (ML) systems that can handle diverse…
Anxiety is a common mental health condition that affects millions of people around the world.…
In machine learning, confounder features or variables can significantly affect the accuracy and validity of…
Last updated: 26 Sept, 2024 Credit card fraud detection is a major concern for credit…