Machine Learning

Scikit-learn vs Tensorflow – When to use What?

In this post, you will learn about when to use Scikit-learn vs TensorflowFor data scientists/machine learning enthusiasts, it is very important to understand the difference such that they could use these libraries appropriately while working on different business use cases. 

When to use Scikit-learn?

Scikit-learn is a great entry point for beginners data scientists. It provides an efficient implementation of many machine learning algorithms. In addition, it is very simple and easy to use. You can get started with Scikit-learn in a very easy manner by using Jupyter notebook. Scikit-learn can be used to solve different kinds of machine learning problems including some of the following:

  • Classification (SVM, nearest neighbors, random forest, logistic regression, etc)
  • Regression (SVR, nearest neighbors, random forest, etc)
  • Clustering (K-means, spectral clustering, etc)
  • Model selection (grid search, cross-validation, metrics etc)
  • Dimensionality reduction (K-means, feature selection, etc)

Scikit-learn mainly works with tabular data.

When to use Tensorflow?

Tensorflow, on the other hand, makes it possible to train and run very large neural networks efficiently based on deep learning algorithms by distributing the computations across potentially thousands of multi-GPU servers. It is a more complex library for distributed numerical computation using data flow graphs. Simply speaking, Tensorflow is a low-level library that is used for deep learning models, unlike scikit-learn which can be considered as the high-level library used to train classical machine learning models.

Tensorflow works with a variety of data such as tabular, text, images, audio, and video.

Ajitesh Kumar

I have been recently working in the area of Data analytics including Data Science and Machine Learning / Deep Learning. I am also passionate about different technologies including programming languages such as Java/JEE, Javascript, Python, R, Julia, etc, and technologies such as Blockchain, mobile computing, cloud-native technologies, application security, cloud computing platforms, big data, etc. I would love to connect with you on Linkedin. Check out my latest book titled as First Principles Thinking: Building winning products using first principles thinking.

Recent Posts

Retrieval Augmented Generation (RAG) & LLM: Examples

Last updated: 25th Jan, 2025 Have you ever wondered how to seamlessly integrate the vast…

4 weeks ago

How to Setup MEAN App with LangChain.js

Hey there! As I venture into building agentic MEAN apps with LangChain.js, I wanted to…

1 month ago

Build AI Chatbots for SAAS Using LLMs, RAG, Multi-Agent Frameworks

Software-as-a-Service (SaaS) providers have long relied on traditional chatbot solutions like AWS Lex and Google…

1 month ago

Creating a RAG Application Using LangGraph: Example Code

Retrieval-Augmented Generation (RAG) is an innovative generative AI method that combines retrieval-based search with large…

1 month ago

Building a RAG Application with LangChain: Example Code

The combination of Retrieval-Augmented Generation (RAG) and powerful language models enables the development of sophisticated…

1 month ago

Building an OpenAI Chatbot with LangChain

Have you ever wondered how to use OpenAI APIs to create custom chatbots? With advancements…

1 month ago