Machine Learning

Scikit-learn vs Tensorflow – When to use What?

In this post, you will learn about when to use Scikit-learn vs TensorflowFor data scientists/machine learning enthusiasts, it is very important to understand the difference such that they could use these libraries appropriately while working on different business use cases. 

When to use Scikit-learn?

Scikit-learn is a great entry point for beginners data scientists. It provides an efficient implementation of many machine learning algorithms. In addition, it is very simple and easy to use. You can get started with Scikit-learn in a very easy manner by using Jupyter notebook. Scikit-learn can be used to solve different kinds of machine learning problems including some of the following:

  • Classification (SVM, nearest neighbors, random forest, logistic regression, etc)
  • Regression (SVR, nearest neighbors, random forest, etc)
  • Clustering (K-means, spectral clustering, etc)
  • Model selection (grid search, cross-validation, metrics etc)
  • Dimensionality reduction (K-means, feature selection, etc)

Scikit-learn mainly works with tabular data.

When to use Tensorflow?

Tensorflow, on the other hand, makes it possible to train and run very large neural networks efficiently based on deep learning algorithms by distributing the computations across potentially thousands of multi-GPU servers. It is a more complex library for distributed numerical computation using data flow graphs. Simply speaking, Tensorflow is a low-level library that is used for deep learning models, unlike scikit-learn which can be considered as the high-level library used to train classical machine learning models.

Tensorflow works with a variety of data such as tabular, text, images, audio, and video.

Ajitesh Kumar

I have been recently working in the area of Data analytics including Data Science and Machine Learning / Deep Learning. I am also passionate about different technologies including programming languages such as Java/JEE, Javascript, Python, R, Julia, etc, and technologies such as Blockchain, mobile computing, cloud-native technologies, application security, cloud computing platforms, big data, etc. I would love to connect with you on Linkedin. Check out my latest book titled as First Principles Thinking: Building winning products using first principles thinking.

Recent Posts

Agentic Reasoning Design Patterns in AI: Examples

In recent years, artificial intelligence (AI) has evolved to include more sophisticated and capable agents,…

1 month ago

LLMs for Adaptive Learning & Personalized Education

Adaptive learning helps in tailoring learning experiences to fit the unique needs of each student.…

2 months ago

Sparse Mixture of Experts (MoE) Models: Examples

With the increasing demand for more powerful machine learning (ML) systems that can handle diverse…

2 months ago

Anxiety Disorder Detection & Machine Learning Techniques

Anxiety is a common mental health condition that affects millions of people around the world.…

2 months ago

Confounder Features & Machine Learning Models: Examples

In machine learning, confounder features or variables can significantly affect the accuracy and validity of…

2 months ago

Credit Card Fraud Detection & Machine Learning

Last updated: 26 Sept, 2024 Credit card fraud detection is a major concern for credit…

2 months ago