scikit learn vs tensorflow
In this post, you will learn about when to use Scikit-learn vs Tensorflow. For data scientists/machine learning enthusiasts, it is very important to understand the difference such that they could use these libraries appropriately while working on different business use cases.
Scikit-learn is a great entry point for beginners data scientists. It provides an efficient implementation of many machine learning algorithms. In addition, it is very simple and easy to use. You can get started with Scikit-learn in a very easy manner by using Jupyter notebook. Scikit-learn can be used to solve different kinds of machine learning problems including some of the following:
Scikit-learn mainly works with tabular data.
Tensorflow, on the other hand, makes it possible to train and run very large neural networks efficiently based on deep learning algorithms by distributing the computations across potentially thousands of multi-GPU servers. It is a more complex library for distributed numerical computation using data flow graphs. Simply speaking, Tensorflow is a low-level library that is used for deep learning models, unlike scikit-learn which can be considered as the high-level library used to train classical machine learning models.
Tensorflow works with a variety of data such as tabular, text, images, audio, and video.
Large language models (LLMs) have fundamentally transformed our digital landscape, powering everything from chatbots and…
As Large Language Models (LLMs) evolve into autonomous agents, understanding agentic workflow design patterns has…
In today's data-driven business landscape, organizations are constantly seeking ways to harness the power of…
In this blog, you would get to know the essential mathematical topics you need to…
This blog represents a list of questions you can ask when thinking like a product…
AI agents are autonomous systems combining three core components: a reasoning engine (powered by LLM),…