Data analytics is a topic that many data-driven organizations are becoming increasingly interested in. Data analytics often includes the process of analyzing data to find insights that can be used to make decisions. But what does this mean? How are different types of analytics related to data-driven decision-making? This blog post will explore how an organization’s use of data can help them make better, more informed decisions. Before getting into the details, lets quickly understand how business analytics is related data analytics.
There are a number of facets that business analytics and data analytics have in common. In both the cases, the common steps include dealing with gathering data from different sources, identifying trends in the data to produce insights, and acting on those insights to create decisions. Data analytics is based on collecting, analyzing, and presenting statistical data with the goal of producing findings and demonstrating how well processes are working or explaining why one outcome was better than another. On the other hand, business analytics relies on its advanced-analysis toolset to derive actionable insights from vast amount of information from disparate systems and display the same on graphically-rich dashboards.
The following is a list of different types of analytics:
A data-driven decision makes use of information from different forms of analytics to identify, understand and prioritize the actions needed. Analytics allows for a more informed understanding of current processes as well as how those processes can be improved upon or even replaced with newer, better ones. The relationship between these two factors becomes apparent when you consider the difference in data-driven decision-making vs. traditional decisions that are made with little to no data or understanding of processes and procedures involved.
There are different forms of analytics available, each one offering its own unique method for gathering data and extracting insights/information from the raw data. Each form of analytics is different and some focus on the bigger picture while others focus on the minutia.
Data-driven decision-making starts with the insight of data analytics, which can be grouped into four categories: descriptive, diagnostic, predictive, and prescriptive. Each category helps drive decisions by providing insights on what is going on or why things are happening. Once you have an understanding of all your data points through each type of analytics, it’s time to decide what to do next. Think about how much better informed you feel when deciding between two options that both seem like good ideas because you know exactly where they will lead based on past performance or future predictions? This feeling should help guide any unprogrammed decisions made after gathering enough information from different types of analytic tools.
We’ve all been in that meeting. The dashboard on the boardroom screen is a sea…
When building a regression model or performing regression analysis to predict a target variable, understanding…
If you've built a "Naive" RAG pipeline, you've probably hit a wall. You've indexed your…
If you're starting with large language models, you must have heard of RAG (Retrieval-Augmented Generation).…
If you've spent any time with Python, you've likely heard the term "Pythonic." It refers…
Large language models (LLMs) have fundamentally transformed our digital landscape, powering everything from chatbots and…