This is a quick post representing code sample related to how to extract month & year from datetime column of DataFrame in Pandas.
The code sample is shown using the sample data, BrentOilPrices downloaded from this Kaggle data page.
Here is the code to load the data frame.
import pandas as pd
df = pd.read_csv('BrentOilPrices.csv')
Check the data type of the data using the following code:
df.dtypes
The output looks like the following:
Date object
Price float64
dtype: object
Use the following command to change the date data type from object to datetime and extract the month and year.
df['Date'] = pd.to_datetime(df['Date']) df['year'] = pd.DatetimeIndex(df['Date']).year df['month'] = pd.DatetimeIndex(df['Date']).month
Printing data using head command would print the following:
When building a regression model or performing regression analysis to predict a target variable, understanding…
If you've built a "Naive" RAG pipeline, you've probably hit a wall. You've indexed your…
If you're starting with large language models, you must have heard of RAG (Retrieval-Augmented Generation).…
If you've spent any time with Python, you've likely heard the term "Pythonic." It refers…
Large language models (LLMs) have fundamentally transformed our digital landscape, powering everything from chatbots and…
As Large Language Models (LLMs) evolve into autonomous agents, understanding agentic workflow design patterns has…