Python

Python – 5 Sets of Useful Numpy Unary Functions

In this post, you will learn about some of the 5 most popular or useful set of unary universal functions (ufuncs) provided by Python Numpy library. As data scientists, it will be useful to learn these unary functions by heart as it will help in performing arithmetic operations on sequential-like objects.  These functions can also be termed as vectorized wrapper functions which are used to perform element-wise operations.

The following represents different set of popular functions:

  • Basic arithmetic operations
  • Summary statistics
  • Sorting
  • Minimum / maximum
  • Array equality

Basic Arithmetic Operations

The following are some of the unary functions whichc an be used to perform arithmetic operations:

  • add, subtract, multiply, divide, exp
  • add.reduce
  • sum

Here is the sample code demonstrating the usage of the above functions:

import numpy as np
#
# Create an array of 5 numbers between 5 and 10
#
arr = np.linspace(5, 10, 5)
#
# Print array
#
print(arr)
#
# Perform arithmetic operations
#
np.add(arr, 1), np.subtract(arr, 1), np.multiply(arr, 2), np.divide(arr, 2)

Here is how the output would look like:

Fig 1. Numpy Unary Arithmetic Functions

In case, you want to add all the numbers in a row or column and get the output as matrix, functions such as add.reduce or sum is used with axis. In the code sample given below, a 2 x 5 matrix is reduced by rows (axis=1) and columns (axis=0)

Fig 2. Numpy Unary functions to sum rows and columns

Summary Statistics

The following are some of the methods which can be used for calculating summary statistics:

  • mean, median: Finds the mean and median of the data sample respectively.
  • std: Finds the standard deviation of the data
  • var: Finds the variance of the data

Here is the code demonstrating the usage of above functions with SKlearn IRIS dataset.

import numpy as np
from sklearn import datasets

iris = datasets.load_iris()

np.mean(iris.data[:,0]), np.std(iris.data[:,0]), np.var(iris.data[:,0]), np.median(iris.data[:,0])

Here is how the output will look like:

Fig 2. Numpy unary functions to fund summary statistics

Sorting

The following represents the Numpy unary functions which can be used for sorting the array:

  • sort: Sort the data
  • argsort: Finds the indices of the sorted data

Here is the code demonstrating the usage of above functions with SKlearn IRIS dataset:

import numpy as np
from sklearn import datasets

iris = datasets.load_iris()

iris.data[0:10, 0]

np.sort(iris.data[0:10, 0])

np.argsort(iris.data[0:10, 0])

Here is how the output will look like:

Fig 3. Numpy unary functions for sorting

Finding Maximum / Minimum

The following are some of the methods which can be used for finding maximum and minimum value from a data array:

  • min: Finds the minimum of the array
  • max: Finds the maximum of the array
  • argmin: Finds the index of the minimum of the array
  • argmax: Finds the index of the maximum of the array

Here is the code demonstrating the usage of above functions with SKlearn IRIS dataset:

import numpy as np
from sklearn import datasets

iris = datasets.load_iris()

iris.data[0:10, 0]

np.min(iris.data[0:10, 0]), np.argmin(iris.data[0:10, 0])

np.max(iris.data[0:10, 0]), np.argmax(iris.data[0:10, 0])

Here is how the output will look like:

Fig 4. Numpy unary functions for finding minimum and maximum
Ajitesh Kumar

I have been recently working in the area of Data analytics including Data Science and Machine Learning / Deep Learning. I am also passionate about different technologies including programming languages such as Java/JEE, Javascript, Python, R, Julia, etc, and technologies such as Blockchain, mobile computing, cloud-native technologies, application security, cloud computing platforms, big data, etc. I would love to connect with you on Linkedin. Check out my latest book titled as First Principles Thinking: Building winning products using first principles thinking.

Recent Posts

Agentic Reasoning Design Patterns in AI: Examples

In recent years, artificial intelligence (AI) has evolved to include more sophisticated and capable agents,…

1 month ago

LLMs for Adaptive Learning & Personalized Education

Adaptive learning helps in tailoring learning experiences to fit the unique needs of each student.…

1 month ago

Sparse Mixture of Experts (MoE) Models: Examples

With the increasing demand for more powerful machine learning (ML) systems that can handle diverse…

2 months ago

Anxiety Disorder Detection & Machine Learning Techniques

Anxiety is a common mental health condition that affects millions of people around the world.…

2 months ago

Confounder Features & Machine Learning Models: Examples

In machine learning, confounder features or variables can significantly affect the accuracy and validity of…

2 months ago

Credit Card Fraud Detection & Machine Learning

Last updated: 26 Sept, 2024 Credit card fraud detection is a major concern for credit…

2 months ago