In this post, you will learn about some of the 5 most popular or useful set of unary universal functions (ufuncs) provided by Python Numpy library. As data scientists, it will be useful to learn these unary functions by heart as it will help in performing arithmetic operations on sequential-like objects. These functions can also be termed as vectorized wrapper functions which are used to perform element-wise operations.
The following represents different set of popular functions:
The following are some of the unary functions whichc an be used to perform arithmetic operations:
Here is the sample code demonstrating the usage of the above functions:
import numpy as np
#
# Create an array of 5 numbers between 5 and 10
#
arr = np.linspace(5, 10, 5)
#
# Print array
#
print(arr)
#
# Perform arithmetic operations
#
np.add(arr, 1), np.subtract(arr, 1), np.multiply(arr, 2), np.divide(arr, 2)
Here is how the output would look like:
In case, you want to add all the numbers in a row or column and get the output as matrix, functions such as add.reduce or sum is used with axis. In the code sample given below, a 2 x 5 matrix is reduced by rows (axis=1) and columns (axis=0)
The following are some of the methods which can be used for calculating summary statistics:
Here is the code demonstrating the usage of above functions with SKlearn IRIS dataset.
import numpy as np
from sklearn import datasets
iris = datasets.load_iris()
np.mean(iris.data[:,0]), np.std(iris.data[:,0]), np.var(iris.data[:,0]), np.median(iris.data[:,0])
Here is how the output will look like:
The following represents the Numpy unary functions which can be used for sorting the array:
Here is the code demonstrating the usage of above functions with SKlearn IRIS dataset:
import numpy as np
from sklearn import datasets
iris = datasets.load_iris()
iris.data[0:10, 0]
np.sort(iris.data[0:10, 0])
np.argsort(iris.data[0:10, 0])
Here is how the output will look like:
The following are some of the methods which can be used for finding maximum and minimum value from a data array:
Here is the code demonstrating the usage of above functions with SKlearn IRIS dataset:
import numpy as np
from sklearn import datasets
iris = datasets.load_iris()
iris.data[0:10, 0]
np.min(iris.data[0:10, 0]), np.argmin(iris.data[0:10, 0])
np.max(iris.data[0:10, 0]), np.argmax(iris.data[0:10, 0])
Here is how the output will look like:
In recent years, artificial intelligence (AI) has evolved to include more sophisticated and capable agents,…
Adaptive learning helps in tailoring learning experiences to fit the unique needs of each student.…
With the increasing demand for more powerful machine learning (ML) systems that can handle diverse…
Anxiety is a common mental health condition that affects millions of people around the world.…
In machine learning, confounder features or variables can significantly affect the accuracy and validity of…
Last updated: 26 Sept, 2024 Credit card fraud detection is a major concern for credit…