startup

Niramai uses AI / Thermal Imaging for Breast Cancer Screening

Niramai Health Analytix, a Bengaluru-based startup is creating an AI-powered software system for breast cancer screening. Niramai is using following technologies to achieve the objective of breast cancer screening:

  • Thermal image processing using thermal sensing device (thermal camera)
  • Machine learning algorithm
  • Hardware devices integrated with real-time cloud-based diagnostics; These hardware devices are capable of capturing thermal images

What/How of Thermal Image Processing?

Thermal image processing, also termed as thermal imaging, is a method of improving visibility of objects in a dark environment by detecting the objects’ infrared radiation and creating an image based on that information. source: techtarget.

The key to capturing thermal images of an object is a heat sensor (also called as thermal camera) which is capable of detecting tiny differences in the temperature. Given the fact that all objects emit infrared energy (heat), also termed as heat signature, thermal camera (heat sensor) collects the infrared radiation from objects in the scene and creates an electronic / digital image based on information about the temperature differences.

How could thermal imaging and machine learning go hand-in-hand?

Given above, it is understood that thermal imaging would result in an electronic / digital image of an object. These images can be fed into machine learning algorithm and train a model based on supervised learning technique. Deep learning algorithms such as Convolutional neural network can be used to classify these images to different categories. If you are planning to create AI solution by feeding images, you could try cloud AI solutions such as some of the following:



Thermal image processing + machine learning -> Niramai solution for Breast Cancer Classification

Niramai uses a high resolution thermal sensing device to capture thermal images. These images are, then, sent over internet to cloud storage system. The images are then fed into machine learning model for training, testing and optimizing the model.

Technology Landscape of Niramai Health Analytix

The following is how the technology landscape some developing AI solution such as Niramai may look like:

  • Thermal imaging devices (hardware)
  • Big data technologies for data processing
  • Machine learning algorithms
  • Cloud-computing for storage, large-scale processing
  • Web application for accessing the results
Latest posts by Ajitesh Kumar (see all)
Ajitesh Kumar

I have been recently working in the area of Data analytics including Data Science and Machine Learning / Deep Learning. I am also passionate about different technologies including programming languages such as Java/JEE, Javascript, Python, R, Julia, etc, and technologies such as Blockchain, mobile computing, cloud-native technologies, application security, cloud computing platforms, big data, etc. I would love to connect with you on Linkedin. Check out my latest book titled as First Principles Thinking: Building winning products using first principles thinking.

Recent Posts

What are AI Agents? How do they work?

Artificial Intelligence (AI) agents have started becoming an integral part of our lives. Imagine asking…

2 weeks ago

Agentic AI Design Patterns Examples

In the ever-evolving landscape of agentic AI workflows and applications, understanding and leveraging design patterns…

2 weeks ago

List of Agentic AI Resources, Papers, Courses

In this blog, I aim to provide a comprehensive list of valuable resources for learning…

3 weeks ago

Understanding FAR, FRR, and EER in Auth Systems

Have you ever wondered how systems determine whether to grant or deny access, and how…

3 weeks ago

Top 10 Gartner Technology Trends for 2025

What revolutionary technologies and industries will define the future of business in 2025? As we…

3 weeks ago

OpenAI GPT Models in 2024: What’s in it for Data Scientists

For data scientists and machine learning researchers, 2024 has been a landmark year in AI…

4 weeks ago