Data Science

Machine Learning Models Evaluation Infographics

In this post, you will get an access to a self-explanatory infographics / diagram representing different aspects / techniques which need to be considered while doing machine learning model evaluation. Here is the infographics:

 

Fig 1. Different aspects of Model Evaluation

In the above diagram, you will notice that the following needs to be considered once the model is trained. This is required to be done to select one model out of many models which get trained.

  • Basic parameters: The following need to be considered for evaluating the model:
    • Bias & variance
    • Overfitting & underfitting
    • Holdout method
    • Confidence intervals
  • Resampling methods: The following techniques need to be adopted for evaluating models:
    • Repeated holdout
    • Empirical confidence intervals
  • Cross-validation: Cross validation technique is required to be performed for achieving some of the following
    • Hyperparameters tuning
    • Model selection
    • Algorithm selection
  • Statistical tests: Statistical tests need to be performed for doing the following:
    • Model comparison
    • Algorithm comparison
  • Evaluation metrics

The image is adopted from this page.

Ajitesh Kumar

I have been recently working in the area of Data analytics including Data Science and Machine Learning / Deep Learning and BI. I would love to connect with you on Linkedin. Check out my books titled as Designing Decisions, and First Principles Thinking.

Recent Posts

The Watermelon Effect: When Green Metrics Lie

We’ve all been in that meeting. The dashboard on the boardroom screen is a sea…

3 weeks ago

Coefficient of Variation in Regression Modelling: Example

When building a regression model or performing regression analysis to predict a target variable, understanding…

3 months ago

Chunking Strategies for RAG with Examples

If you've built a "Naive" RAG pipeline, you've probably hit a wall. You've indexed your…

3 months ago

RAG Pipeline: 6 Steps for Creating Naive RAG App

If you're starting with large language models, you must have heard of RAG (Retrieval-Augmented Generation).…

3 months ago

Python: List Comprehension Explained with Examples

If you've spent any time with Python, you've likely heard the term "Pythonic." It refers…

4 months ago

Large Language Models (LLMs): Four Critical Modeling Stages

Large language models (LLMs) have fundamentally transformed our digital landscape, powering everything from chatbots and…

6 months ago